Can Gödel's Incompleteness Theorem be a Ground for Dialetheism?

괴델의 불완전성 정리가 양진주의의 근거가 될 수 있는가?

  • Received : 2017.01.09
  • Accepted : 2017.06.05
  • Published : 2017.06.30

Abstract

Dialetheism is the view that there exists a true contradiction. This paper ventures to suggest that Priest's argument for Dialetheism from $G{\ddot{o}}del^{\prime}s$ theorem is unconvincing as the lesson of $G{\ddot{o}}del^{\prime}s$ proof (or Rosser's proof) is that any sufficiently strong theories of arithmetic cannot be both complete and consistent. In addition, a contradiction is derivable in Priest's inconsistent and complete arithmetic. An alternative argument for Dialetheism is given by applying $G{\ddot{o}}del$ sentence to the inconsistent and complete theory of arithmetic. We argue, however, that the alternative argument raises a circularity problem. In sum, $G{\ddot{o}}del^{\prime}s$ and its related theorem merely show the relation between a complete and a consistent theory. A contradiction derived by the application of $G{\ddot{o}}del$ sentence has the value of true sentences, i.e. the both-value, only under the inconsistent models for arithmetic. Without having the assumption of inconsistency or completeness, a true contradiction is not derivable from the application of $G{\ddot{o}}del$ sentence. Hence, $G{\ddot{o}}del^{\prime}s$ and its related theorem never can be a ground for Dialetheism.

양진주의는 참인 모순이 존재한다는 입장이다. 필자는 이 글에서 괴델 정리가 양진주의의 근거라는 프리스트의 논변이 설득력이 없음을 논할 것이다. 이는 괴델 증명이 우리에게 주는 교훈은 임의의 충분히 강한 산수에 관한 이론이 완전하면서 일관적일 수 없다는 것이기 때문이다. 다음으로 필자는 프리스트의 비일관적이고 완전한 산수에서 모순이 도출될 수 있음을 설명할 것이다. 그리고 괴델 문장이 비일관적이고 완전한 산수이론에 적용되어 양진주의에 관한 대안논변을 제시할 수 있음을 소개하고 이 경우에는 순환성의 문제가 있음을 논할 것이다. 요약해서, 필자는 괴델 정리 및 그와 관련된 정리는 완전한 이론들과 일관적인 이론들 간의 관계를 보여줄 뿐임을 주장할 것이다. 괴델 문장의 적용을 통해 도출된 모순이 중간값과 같은 참인 문장의 값을 지닐 수 있는 것 역시 산수에 관한 비일관 모형에서일 뿐이다. 비일관성이나 완전성에 관한 가정을 하지 않는다면, 괴델 문장의 적용이 참인 모순을 이끌어 낼 수 없으며 그렇기에 괴델 정리 및 그와 관련된 정리는 양진주의의 근거가 될 수 없다.

Keywords

References

  1. Anderson, A. R. and Belnap, N. D. (1975), Entailment, Princeton New Jersey: Princeton University Press.
  2. Beall, J., Foster, T., and Seligman, J. (2012), "A Note on Freedom from Detachment in the Logic of Paradox", Notre Dame Journal of Formal Logic, 54 (1), pp. 15-20. https://doi.org/10.1215/00294527-1731353
  3. Chihara, C. S. (1984), "Priest, The Liar, and Godel", Journal of Philosophical Logic, 13, pp. 117-124. https://doi.org/10.1007/BF00453016
  4. Dummett, M. (1963), "The Philosophical Significance of Godel's Theorem", in M. Dummett, (ed.), Truth and Other Enigmas, Cambridge: Harvard University Press, pp. 186-201.
  5. Godel, K. (1931), "On formally undecidable propositions of Principia Mathematica and related system I", in S. Feferman, J.W. Dawson, S.C. Kleene, G. H. Moore, R.M. Solovay, J. Heijenoort, (eds.), Kurt Godel: Collected Works, Volume I, Oxford: Oxford University Press, pp. 144-195.
  6. Hellman, G. and Bell, J. (2006), "Pluralism and the Foundations of Mathematics", in C.K. Waters et all. (eds.), Scientific Pluralism, Minnesota Studies in the Philosophy of Science, Vol. XIX, Minneapolis: University of Minnesota Press, pp. 64-79.
  7. Meyer, R. K. (1976), "Relevant Arithmetic", Bulletin of the Section of Logic of the Polish Academy of Sciences, 5, pp. 133-137.
  8. Meyer, R. K. (1996), "Kurt Godel and the Consistency of R#", in P. Hajek, ed., Logical Foundations of Mathematics, Computer Science and Physics: Kurt Godel's Legacy, Springer, pp. 247-256.
  9. Meyer, R. K. and Mortensen, C. (1984), "Inconsistent Models for Relevant Arithmetics", The Journal of Symbolic Logic, 49, pp. 917-929. https://doi.org/10.2307/2274145
  10. Paris, J. B. and Pathmanathan, N. (2006), "A Note on Priest's Finite Inconsistent Arithmetics", Journal of Philosophical Logic, 35, pp. 529-537. https://doi.org/10.1007/s10992-006-9031-1
  11. Paris, J.B. and Sirokofskich, A. (2008), "On LP-models of Arithmetic", The Journal of Symbolic Logic, 73 (1), pp. 212-226. https://doi.org/10.2178/jsl/1208358750
  12. Priest, G. (1979), "The Logic of Paradox", Journal of Philosophical Logic, 8 (1), pp. 219-241. https://doi.org/10.1007/BF00258428
  13. Priest, G. (1984), "Logic of Paradox Revisited", Journal of Philosophical Logic, 13, pp. 153-179. https://doi.org/10.1007/BF00453020
  14. Priest, G. (1991), "Minimally inconsistent LP", Studia Logica, 50, pp. 321-331. https://doi.org/10.1007/BF00370190
  15. Priest, G. (1997), "Inconsistent Models for Arithmetic: I, Finite Models", The Journal of Philosophical Logic, 26, pp. 223-235. https://doi.org/10.1023/A:1004251506208
  16. Priest, G. (2000), "Inconsistent Models for Arithmetic: II, The General Case", The Journal of Symbolic Logic, 65, pp. 1519-1529. https://doi.org/10.2307/2695062
  17. Priest, G. (2005), Towards Non-Being, Oxford University Press.
  18. Priest, G. (2006a), In Contradiction: A Study of the Transconsistent (expanded ed.), Clarendon: Oxford University Press.
  19. Priest, G. (2006b), Doubt Truth to be a Liar, Clarendon: Oxford University Press.
  20. Priest, G. (2013), "Mathematical Pluralism", Logic Journal of IGPL, 21(1), pp. 4-13. https://doi.org/10.1093/jigpal/jzs018
  21. Shapiro, S. (2002), "Incompleteness and Inconsistency", Mind, 111, pp. 817-832. https://doi.org/10.1093/mind/111.444.817
  22. Rosser, R. (1936), "Extensions of Some Theorems of Godel and Church", The Journal of Symbolic Logic, 1, pp. 87-91. https://doi.org/10.2307/2269028
  23. Tarski, A. (1933), "Some Observations on the Concepts of ${\omega}$-consistency and ${\omega}$-completeness", in J. Corcoran, Logic, Semantics, Metamathematics: Papers from 1922 to 1938, 2nd ed., Hackett Publishing Company, pp. 279-295.
  24. Tennant, N. (2004), "Anti-Realist Critique of Dialetheism", in G. Priest, JC Beall, and B.A. Garb, Eds., The Law of Non-Contradiction, Clarendon: Oxford University Press, pp. 355-384.