DOI QR코드

DOI QR Code

Sensory and motor axons are different: implications for neurological disease

  • Burke, David (Department of Neurology, Royal Prince Alfred Hospital, University of Sydney) ;
  • Howells, James (Brain and Mind Centre, University of Sydney) ;
  • Kiernan, Matthew C. (Department of Neurology, Royal Prince Alfred Hospital, University of Sydney)
  • Received : 2016.09.06
  • Accepted : 2016.09.15
  • Published : 2017.01.31

Abstract

Using threshold tracking, differences have been established between large myelinated sensory and ${\alpha}$ motor axons in humans. Major differences are that sensory axons are relatively depolarised at rest such that they have a greater persistent $Na^+$ current, and have greater activity of hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels. Sensory axons may thereby be protected from hyperpolarising stresses, and are less likely to develop conduction block. However, the corollary is that sensory axons are more excitable and more likely to become ectopically active.

Keywords

References

  1. Vogel W, Schwarz JR. Voltage-clamp studies on axons: macroscopic and single-channel currents. In: Waxman SG, Stys PK, Kocsis JD, eds. Oxford: Oxford University Press; 1995. pp. 257-280.
  2. Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG. Molecular changes in neurons in multiple sclerosis: altered axonal expression of $Na_v1.2$ and $Na_v1.6$ sodium channels and $Na^+$/$Ca^{2+}$ exchanger. Proc Natl Acad Sci U S A 2004;101:8168-8173. https://doi.org/10.1073/pnas.0402765101
  3. Baker M, Bostock H, Grafe P, Martius P. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J Physiol 1987;383:45-67. https://doi.org/10.1113/jphysiol.1987.sp016395
  4. Grafe P, Bostock H, Schneider U. The effects of hyperglycaemic hypoxia on rectification in rat dorsal root axons. J Physiol 1994;480:297-307. https://doi.org/10.1113/jphysiol.1994.sp020360
  5. Tatsumi H, Katayama Y. $Na^+$ dependent $Ca^{2+}$ influx induced by depolarization in neurons dissociated from rat nucleus basalis. Neurosci Lett 1995;196:9-12. https://doi.org/10.1016/0304-3940(95)11823-F
  6. Vucic S, Burke D, Kiernan MC. Fatigue in multiple sclerosis: mechanisms and management. Clin Neurophysiol 2010;121:809-817. https://doi.org/10.1016/j.clinph.2009.12.013
  7. Bostock H, Burke D, Hales JP. Differences in behaviour of sensory and motor axons following release of ischaemia. Brain 1994;117:225-234. https://doi.org/10.1093/brain/117.2.225
  8. Mogyoros I, Kiernan MC, Burke D, Bostock H. Excitability changes in human sensory and motor axons during hyperventilation and ischaemia. Brain 1997;120:317-325. https://doi.org/10.1093/brain/120.2.317
  9. Burke D, Kiernan MC, Mogyoros I, Bostock H. Susceptibility to conduction block: differences in the biophysical properties of cutaneous afferents and motor axons. In: Kimura J, Kaji R, ed. Physiology of ALS and Related Disorders. Amsterdam: Elsevier, 1997;43-53.
  10. Kiernan MC, Mogyoros I, Burke D. Differences in the recovery of excitability in sensory and motor axons of human median nerve. Brain 1996;119:1099-1105. https://doi.org/10.1093/brain/119.4.1099
  11. Mogyoros I, Kiernan MC, Burke D. Strength-duration properties of human peripheral nerve. Brain 1996;119:439-447. https://doi.org/10.1093/brain/119.2.439
  12. Bostock H, Rothwell JC. 1997. Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol 1997;498(Pt 1):277-294. https://doi.org/10.1113/jphysiol.1997.sp021857
  13. Lin CS-Y, Kuwabara S, Cappelen-Smith C, Burke D. Responses of human sensory and motor axons to the release of ischaemia and to hyperpolarizing currents. J Physiol 2002;541:1025-1039. https://doi.org/10.1113/jphysiol.2002.017848
  14. Tomlinson S, Burke D, Hanna M, Koltzenburg M, Bostock H. In vivo assessment of HCN channel current ($I_h$) in human motor axons. Muscle Nerve 2010;41:247-256.
  15. Howells J, Trevillion L, Bostock H, Burke, D. The voltage dependence of $I_h$ in human myelinated axons. J Physiol 2012;590:1625-1640. https://doi.org/10.1113/jphysiol.2011.225573
  16. Howells J, Bostock H, Burke D. Accommodation to hyperpolarization of human axons assessed in the frequency domain. J Neurophysiol 2016;116:322-335. https://doi.org/10.1152/jn.00019.2016
  17. Kiernan MC, Burke D, Andersen KV, Bostock H. Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 2000;23:399-409. https://doi.org/10.1002/(SICI)1097-4598(200003)23:3<399::AID-MUS12>3.0.CO;2-G
  18. Kiernan MC, Lin CS-Y, Andersen KV, Murray NM, Bostock H. Clinical evaluation of excitability measures in sensory nerve. Muscle Nerve 2001;24:883-892. https://doi.org/10.1002/mus.1085
  19. Howells J, Czesnik D, Trevillion L, Burke D. Excitability and the safety margin in human axons during hyperthermia. J Physiol 2013;59:3063-3080.
  20. Bostock H, Grafe P. Activity-dependent excitability changes in normal and demyelinated rat spinal root axons. J Physiol 1985;365:239-257. https://doi.org/10.1113/jphysiol.1985.sp015769
  21. Morita K, David G, Barrett JN, Barrett EF. Posttetanic hyperpolarization produced by electrogenic $Na^+$-$K^+$ pump in lizard axons impaled near their motor terminals. J Neurophysiol 1993;70:1874-1884. https://doi.org/10.1152/jn.1993.70.5.1874
  22. Bostock H, Bergmans J. Post-tetanic excitability changes and ectopic discharges in a human motor axon. Brain 1994;117:913-928. https://doi.org/10.1093/brain/117.5.913
  23. Vagg R, Mogyoros I, Kiernan MC, Burke D. Activity-dependent hyperpolarization of human motor axons produced by natural activity. J Physiol 1998;507:919-925. https://doi.org/10.1111/j.1469-7793.1998.919bs.x
  24. Kiernan MC, Lin CS-Y, Burke D. Differences in activity-dependent hyperpolarization in human sensory and motor axons. J Physiol 2004;558:341-349. https://doi.org/10.1113/jphysiol.2004.063966
  25. Park SB, Lin CS-Y, Burke D, Kiernan MC. Activity-dependent conduction failure: molecular insights. J Peripher Nerv Syst 2011;16:159-168. https://doi.org/10.1111/j.1529-8027.2011.00358.x
  26. Kiernan MC, Isbister GK, Lin CS-Y, Burke D, Bostock H. Acute tetrodotoxin-induced neurotoxicity after ingestion of puffer fish. Ann Neurol 2005;57:339-348. https://doi.org/10.1002/ana.20395
  27. Inglis JT, Leeper JB, Wilson LR, Gandevia SC, Burke D. The development of conduction block in single human axons following a focal nerve injury. J Physiol 1998;513:127-133. https://doi.org/10.1111/j.1469-7793.1998.127by.x
  28. Vallbo AB. Prediction of propagation block on the basis of impulse shape in single unit recordings from human nerves. Acta Physiol Scand 1976;97:66-74. https://doi.org/10.1111/j.1748-1716.1976.tb10236.x
  29. Kaji R, Bostock H, Kohara N, Murase N, Kimura J, Shibasaki H. Activity-dependent conduction block in multifocal motor neuropathy. Brain 2000;123:1602-1611. https://doi.org/10.1093/brain/123.8.1602
  30. Cappelen-Smith C, Kuwabara S, Lin CS-Y, Mogyoros I, Burke D. Activity-dependent hyperpolarization and conduction block in chronic inflammatory demyelinating polyneuropathy. Ann Neurol 2000;48:826-832. https://doi.org/10.1002/1531-8249(200012)48:6<826::AID-ANA2>3.0.CO;2-P
  31. Nodera H, Bostock H, Izumi Y, Nakamura K, Urushihara R, Sakamoto T, et al. Activity-dependent conduction block in multifocal motor neuropathy: magnetic fatigue test. Neurology 2006;67:280-287. https://doi.org/10.1212/01.wnl.0000225048.20239.e4
  32. Straver DC, van den Berg LH, Franssen H. Activity-dependent conduction block in chronic inflammatory demyelinating polyneuropathy. J Neurol Sci 2011;300:33-38. https://doi.org/10.1016/j.jns.2010.10.008
  33. Straver DC, van den Berg LH, van den Berg-Vos RM, Franssen H. Activity-dependent conduction block in multifocal motor neuropathy. Muscle Nerve 2011;43:31-36. https://doi.org/10.1002/mus.21843

Cited by

  1. Simulating perinodal changes observed in immune-mediated neuropathies: impact on conduction in a model of myelinated motor and sensory axons vol.122, pp.3, 2017, https://doi.org/10.1152/jn.00326.2019
  2. Autonomic and Somatic Nerve Functions in Type 2 Diabetes Mellitus Patients: Electrophysiological Aspects vol.11, pp.11, 2021, https://doi.org/10.3390/diagnostics11112005