DOI QR코드

DOI QR Code

Development and Characterization of a Hydrolyzed Goat Milk Protein/Chitosan Oligosaccharide Nano-Delivery System

산양유 단백질 분해물/키토올리고당 나노 전달체 제조 및 물리화학적 특성연구

  • Ha, Ho-Kyung (Dept. of Animal Bioscience (Institute of Agriculture and Life Science), Gyeongsang National University) ;
  • Kim, Jin Wook (Dept. of Animal Bioscience (Institute of Agriculture and Life Science), Gyeongsang National University) ;
  • Han, Kyoung-Sik (Dept. of Animal Biotechnology and Resource, Sahmyook University) ;
  • Yun, Sung Seob (R&D Center, Edam Co., Ltd) ;
  • Lee, Mee-Ryung (Dept. of Food and Nutrition, Daegu University) ;
  • Lee, Won-Jae (Dept. of Animal Bioscience (Institute of Agriculture and Life Science), Gyeongsang National University)
  • 하호경 (경상대학교 동물생명과학과(농업생명과학연구원)) ;
  • 김진욱 (경상대학교 동물생명과학과(농업생명과학연구원)) ;
  • 한경식 (삼육대학교 동물생명자원학과) ;
  • 윤숭섭 ((주)이담) ;
  • 이미령 (대구대학교 식품영양학과) ;
  • 이원재 (경상대학교 동물생명과학과(농업생명과학연구원))
  • Received : 2017.09.15
  • Accepted : 2017.09.26
  • Published : 2017.09.30

Abstract

The aims of this study were to manufacture a hydrolyzed goat milk protein (HGMP)/chitosan ologisaccharide (CSO) nano-delivery system (NDS) and to investigate the effects of production variables, such as sodium tripolyphosphate (TPP), HGMP, and CSO concentration levels, on the formation and physicochemical properties of the NDS. An HGMP/CSO NDS was produced using the ionic gelation method at pH 5.5. Transmission electron microscopy and a particle size analyzer were used to determine the morphological and physicochemical properties of NDSs, respectively. The size of the HGMP/CSO NDS decreased from 225 to 138 nm as HGMP and CSO concentration levels decreased. The NDS had a positive surface charge, with a zeta-potential value of +23 mV. The encapsulation efficiency (EE) of docosahexaenoic acid was enhanced as the HGMP concentration level increased. Additionally, increasing the concentration level of CSO resulted in an increase in the EE of resveratrol. The HGMP/CSO NDS exhibited good physical stability during freeze-drying. Thus, our findings showed that the HGMP/CSO NDS was successfully manufactured and that HGMP and CSO concentration levels were key factors affecting the physicochemical properties of the NDS.

본 연구에서는 산양유 단백질 분해물과 키토올리고당을 이용하여 약 138~225 nm 크기를 지니는 구형의 나노 전달체를 성공적으로 제조하였다. 제조된 나노 전달체는 소수성 건강기능성 물질인 DHA와 레스베라트롤을 각각 ~22 mg/100 mL와 ~4.5 mg/100 mL 씩 포집가능하며, 제조 공정요인(예, TPP 농도, 산양유 단백질 분해물 농도, 키토올리고당 농도) 조절을 통해 입자 크기, 표면전하등과 같은 나노 전달체의 물리화학적 특성과 소수성 건강기능성 물질의 포집 효율을 조절할 수 있음을 알 수 있었다. 또한 산양유 단백질 분해물/키토올리고당 나노 전달체는 동결건조를 통해 분말화가 가능하기 때문에 식품 적용성이 뛰어나다. 결론적으로 본 연구에서 food-grade 물질인 산양유 단백질 분해물과 키토올리고당을 이용하여 제조한 나노 전달체는 저지방 및 무지방 유식품에 적용 가능한 무지방 기반(non-fat based)의 소수성 건강기능성 물질 전달체로 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Acosta, E. 2009. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opon. Colloid Interface Sci. 14:3-15. https://doi.org/10.1016/j.cocis.2008.01.002
  2. Bernacka, H. 2011. Health-promoting properties of goat milk. Medycyna Weterynaryjna. 67:507-511.
  3. Bhattarai, N., Gunn, J. and Zhang, M. 2010. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62:83-99. https://doi.org/10.1016/j.addr.2009.07.019
  4. Bourassa, P., Bariyanga, J. and Tajmir-Riahi, H. A. 2013. Binding sites of resveratrol, genistein, and curcumin with milk ${\alpha}$- and ${\beta}$-caseins. Phys. Chem. B. 117:1287-1295 https://doi.org/10.1021/jp3114557
  5. Chen, L. and Subirade, M. 2005. Chitosan/${\beta}$-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterial. 26:6041-6053. https://doi.org/10.1016/j.biomaterials.2005.03.011
  6. Doublier, J. L., Garnier, C., Renard, D. and Sanchez, C. 2000. Protein-polysaccharide interactions. Curr. Opin. Colloid Interface Sci. 5:202-214. https://doi.org/10.1016/S1359-0294(00)00054-6
  7. Fathi, M., Mozafari, M. R. and Mohebbi, M. 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trend Food Sci. Tech. 23:13-27. https://doi.org/10.1016/j.tifs.2011.08.003
  8. Gaumet, M., Vargas, A., Gurny, R. and Delie, F. 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69:1-9. https://doi.org/10.1016/j.ejpb.2007.08.001
  9. Ha, H. K., Kim, J. W., Lee, M.-R. and Lee, W.-J. 2013. Formation and characterization of quercetin-loaded chitosan oligosaccharide/${\beta}$-lactogloublin nanoparticle. Food Res. Int. 52:82-90. https://doi.org/10.1016/j.foodres.2013.02.021
  10. Ha, H.-K., Jeon, N.-E., Kim, J. W., Han, K.-S., Yun, S. S., Lee, M.-R. and Lee, W.-J. 2016. Physicochemical characterization and potential prebiotic effect of whey protein isolate/inulin nano complex. Korean J. Food Sci. An. 36:267-274. https://doi.org/10.5851/kosfa.2016.36.2.267
  11. Ha, H.-K., Kim, J.-W., Lee, M.-R., Jun, W. and Lee, W.-J. 2015. Cellular uptake and cytotoxicity of ${\beta}$-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian-Aust. J. Anim. Sci. 28:420-427. https://doi.org/10.5713/ajas.14.0761
  12. Ha, H.-K., Nam, G.-W., Khang, D., Park, S. J., Lee, M.-R. and Lee, W.-J. 2017. Development of two-step temperature process to modulate the physicochemical properties of ${\beta}$-lactoglobulin nanoparticles. Korean J. Food Sci. An. 37:114-124. https://doi.org/10.5851/kosfa.2017.37.1.114
  13. Haenlein, G. F. W. 2004. Goat milk in human nutrition. Small Ruminant Res. 51:155-163. https://doi.org/10.1016/j.smallrumres.2003.08.010
  14. Hu, B., Pan, C., Sun, Y., Hou, Z., Ye, H., Hu, B. and Zeng, X. 2008. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. J. Agric. Food Chem. 56:7451-7458. https://doi.org/10.1021/jf801111c
  15. Hwang, J.-Y., Ha, H.-K., Lee, M.-R., Kim, J. W., Kim, H.-J. and Lee, W.-J. 2017. Physicochemical property and oxidative stability of whey protein concentrate multiple nanoemulsion containing fish oil. J. Food Sci. 82:437-444. https://doi.org/10.1111/1750-3841.13591
  16. Jung, T.-H., Yun, S.-S., Kim, J.-W., Ha, H.-K., Yoo, M., Hwang, H.-J., Jeon, W.-M. and Han, K.-S. 2016. Hydrolysis by Alcalase improves hypoallergenic properties of goat milk protein. Korean J. Food Sci. An. 36:516-522. https://doi.org/10.5851/kosfa.2016.36.4.516
  17. Kaminarides, S. E. and Anifantakis, E. M. 1993. Comparative study of the separation of casein from bovine, ovine and caprine milks using HPLC. J. Dairy Res. 60:495-504. https://doi.org/10.1017/S0022029900027850
  18. Lee, M.-R., Choi, H.-N., Ha, H.-K. and Lee, W.-J. 2013. Production and characterization of beta-lactoglobulin/alginate nanoemulsion containing coenzyme Q10: Impact of heat treatment and alginate concentrate. Korean J. Food Sci. Anim. 33:67-74. https://doi.org/10.5851/kosfa.2013.33.1.67
  19. Park, Y. W. 1994. Hypo-allergenic and therapeutic significance of goat milk. Small Ruminant Res. 14:151-159. https://doi.org/10.1016/0921-4488(94)90105-8
  20. Ron, N., Zimet, P., Bargarum, J. and Livney, Y. D. 2010. Beta-lactoglobulinepolysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int. Dairy J. 20:686-693. https://doi.org/10.1016/j.idairyj.2010.04.001
  21. Schmitt, C. and Turgeon, S. L. 2011. Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface Sci. 167:63-70. https://doi.org/10.1016/j.cis.2010.10.001
  22. Semo, E., Kesselman, E., Danino, D. and Livney, Y. D. 2007. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocolloid. 21:936-942. https://doi.org/10.1016/j.foodhyd.2006.09.006
  23. Urbiene, S., Ciuckinas, A. and Margelyke, J. 1997. Physical and chemical properties and the biological value of goat's, cow's and human milk. Milchwissenschaft. 52:427-430.
  24. Ye, A. 2008. Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications -a review. Int. J. Food Sci. Tech. 43:406-415. https://doi.org/10.1111/j.1365-2621.2006.01454.x
  25. Zimet, P., Rosenberg, D. and Livney, Y. D. 2011. Re-assembled casein micelles and casein nanoparticles as nanovehicles for ${\omega}$-3 polyunsaturated fatty acids. Food Hydrocolloid. 25:1270-1276. https://doi.org/10.1016/j.foodhyd.2010.11.025