DOI QR코드

DOI QR Code

불연속 프리캐스트 콘크리트궤도 슬래브의 변형과 응력 분포 : II. 응력 분포

Deformation and Stress Distribution of Discontinuous Precast Concrete Track Slab : II. Stress Distribution

  • Lee, Dong Hoon (Railway & Metro Division / Engineering Design Dept., Soosung Engineering Co., Ltd.) ;
  • Kim, Ki Hyun (High-Speed Railroad System Research Center, Korea Railroad Research Institute) ;
  • Jang, Seung Yup (Department of Transportation System Engineering, Graduate School of Transportation, Korea National University of Transportation) ;
  • Zi, Goangseup (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University)
  • 투고 : 2017.06.05
  • 심사 : 2017.09.28
  • 발행 : 2017.10.31

초록

본 논문에서는 이전 논문에서 제시한 불연속 프리캐스트 콘크리트궤도 유한요소 해석모델과 초기 변형 및 온도 변형 분석 결과를 이용하여 초기 변형과 온도에 의한 변형이 슬래브의 응력 분포에 미치는 영향을 분석하였다. 분석 결과에 따르면 프리캐스트 콘크리트 슬래브에 이미 발생해 있는 초기 변형과 온도 경사에 의한 변형이 있는 상태에서 열차하중이 작용하는 경우에는 슬래브 중앙, 모서리 중앙, 전단포켓 코너부 등 슬래브 상부에서 최대 인장응력이 발생하게 되어 열차하중만 작용하는 경우와 매우 다른 응력 분포를 나타낸다. 따라서 불연속 프리캐스트 콘크리트 궤도의 실제 취약부의 위치와 파괴모드를 예측하기 위해서는 슬래브의 초기 변형과 온도 변형을 고려하여 열차 하중에 의한 응력을 산정해야만 한다.

In this paper, the effects of initial built-in deformation and temperature deformation on the stress distribution of discontinuous precast concrete track slab under train load were examined. According to the results, when train load is put on a precast concrete slab with initial built-in deformation and deformation due to temperature gradient, the maximum tensile stresses develop at the upper side of slab in the slab center, edge center and corner of shear pocket; the stress distribution is different from that of the case under train load only. Therefore, to accurately predict the actual weak points and failure modes, one should calculate the stress under train load considering the initial built-in and temperature deformation of the slab.

키워드

참고문헌

  1. D.H. Lee, K.H. Kim, S.Y. Jang, G. Zi (2017) Deformation and stress distribution of discontinuous precast concrete track slab: I. Initialand temperature deformation, Journal of Korean Society for Railway Engineers, Korean Society for Railway Engineers, under review.
  2. Abaqus 2016, Abaqus Analysis User's Guide, http://50.16.225.63/v2016/books/usb/default.htm (Accessed 2 June 2017)
  3. Kora Rail Network Authority (2014) Ballasted Track Structure, KR C-14030.
  4. Kora Rail Network Authority (2014) Concrete Track Structure, KR C-14040.
  5. Kora Rail Network Authority (2012) Report of structural analysis for track structures in Iksan-Songjung (Track 2nd Section) of Honam high-speed railway.
  6. S. Rao, J.R. Roesler (2005) Characterizing effective built-in curling from concrete pavement field measurements, ASCE Journal of Transportation Engineering, pp. 320-327.
  7. J. Eisenmann, G. Leykauf (2000) Feste fahrbahn fur schienenbahnen, Betonkalendar, pp. 291-326.
  8. J. Eisenmann, G. Leykauf (2003) Betonfahrbahnen, 2nd edition, Ernst & Sohn.
  9. H.K. Hilsdorf, C.E. Kesler (1966) Fatigue strength of concrete under varying flexural stress, Journal of the American Concrete Institute, 63-50, pp.1059-1076.