DOI QR코드

DOI QR Code

집단에너지 네트워크 설계에 관한 연구 : 크리티컬 링크를 중심으로

A Study on the Network Design in District Heating Networks : Focused on Critical Link

  • 투고 : 2017.08.21
  • 심사 : 2017.09.15
  • 발행 : 2017.09.30

초록

집단에너지 시스템은 높은 에너지 생산 효율과 발전 시 탄소배출량 절감 등의 이점이 있어 활용이 느는 추세다. 집단에너지 시스템은 도입 초기에는 열원 설비와 수요단지간의 개별 연결 형태였으나, 수요지가 증가하며 최근 네트워크 형태로 발전하고 있다. 집단에너지 시스템이 네트워크 형태로 구축하면 미활용 열을 수요가 발생한 곳에 송열하는 열 연계가 가능해지고, 이는 사업자의 수익성을 개선하여 산업에 긍정적 영향을 미친다. 이에 따라 본 연구에서는 열 연계 네트워크 설계를 위한 시뮬레이션을 진행하였다. 시뮬레이션을 거쳐 열 연계 네트워크에서 연중 최대 부하가 발생하는 링크를 크리티컬 링크(Critical Link)로 구분하였다. 또한, 크리티컬 링크의 연계 배관 용량 증감에 대한 민감도 분석을 통해 연계 배관 용량을 증가시키는 것이 열 연계 네트워크 효율에 영향을 미침을 제시하였다. 본 분석 결과를 바탕으로 크리티컬 링크 중 배관 용량의 증가 대비 열 연계량 효과가 높은 지역을 우선적으로 타 집단 에너지 사업자와 열 연계를 추진하면 상호 시너지 창출이 가능할 것이다.

The district heating system has been successfully implemented with higher efficiency levels of energy production and reduction of carbon emissions during heat generation. Traditionally the system consisted of small number of production and demand sites, but, recently it has evolved into a network with large number of sites interconnected each other. By connecting multiple sites into a network, heat from low-cost production sites can be supplied to distant demand sites so as to lower the total operation cost. In this study, we simulate and analyze distict heating networks focused on critical links. a critical link is defined as a link in which capacity is fully utilized. If a newtork has critical links, then those cricial links become bottlenecks and it is difficult to improve the overall network efficiency.

키워드

참고문헌

  1. Ameri, M., Besharati, Z., 2016, Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex, Energy and Buildings, Vol. 110, pp. 135-148 https://doi.org/10.1016/j.enbuild.2015.10.050
  2. Ancona, M. A., Bianchi, M., Branchini, L., Melino, F., 2014, District heating network design and analysis, Energy Procedia, Vol. 45, pp. 1225-1234 https://doi.org/10.1016/j.egypro.2014.01.128
  3. Aringhieri, R., Malucelli, F., 2003, Optimal operations management and network planning of a district heating system with a combined heat and power plant, Annals of Operations Research, Vol. 120, pp. 173-199 https://doi.org/10.1023/A:1023334615090
  4. Bordin, C., Gordini, A., Vigo, D., 2016, An optimization approach for district heating strategic network design, European Journal of Operational Research, Vol. 252, No. 1, pp. 296-307 https://doi.org/10.1016/j.ejor.2015.12.049
  5. Brand, L. et al., 2014, Smart district heating networks-A simulation study of prosumers' impact on technical parameters in distribution networks, Applied Energy, Vol. 129, pp. 39-48 https://doi.org/10.1016/j.apenergy.2014.04.079
  6. Fang, T. T., Lahdelma, R., 2015, Genetic optimization of multi-plant heat production in district heating networks, Applied Energy, Vol. 159, pp. 610-619 https://doi.org/10.1016/j.apenergy.2015.09.027
  7. Gulzar, K.et al., 2015, An auction-based smart district heating grid, 2015 IEEE 20th Conference, pp. 1-8
  8. Han, K. T., Kim, H.M., Yoo, S. H., 2012, The Economic Effects of Integrated-Energy Business: An Input-Output Analysis, KOSEE, Vol. 6, No. 2, pp. 47-54
  9. Jin, S. H., 2016, Definition and Application of the Concept of Disributed Heat Energy : Focusing on the Green Heat Project, KEPAS, Vol. 24, No. 3, pp. 131-160
  10. Kim, J. W., Lee, J. H., Kim, H. M., 2013, Optimal Operation Model of Heat Trade based District Heating and Cooling System Considering Start-up Characteristic of Combined Cycle Generation, KIEE, Vol. 62, No. 11, pp. 1610-1616
  11. Kim, S. K., Kim, L. H., Yoo, S, H., 2015, Economic Feasibility Analysis of the Metropolitan Area Green Heat Project, KOSEE, Vol.24, No. 1, pp. 32-41
  12. Lennermo, G., Lauenburg, P., Brand, L., 2014, Decentralised heat supply in district heating systems: Implications of varying differential pressure, The 14th International Symposium on DH and Cooling
  13. Lim, S. Y., Kim, H. J., Yoo, S, H., 2016, The demand function for residential heat through district heating system and its consumption benefits in Korea, Energy Policy, Vol.97, pp.155-160 https://doi.org/10.1016/j.enpol.2016.07.019
  14. Lu, W., 2011, District heating - A possible part of sustainable urban development in China, KTH, pp. 1-64
  15. Mertz, T. et al., 2016, A MINLP optimization of the configuration and the design of a district heating network: Academic study cases. Energy, Vol. 117, pp. 450-464 https://doi.org/10.1016/j.energy.2016.07.106
  16. Nystedt, A., Shemeikka, J., Klobut, K, 2006, Case analyses of heat trading between buildings connected by a district heating network, Energy conversion and management, Vol. 47, No. 20, pp. 3652-3658 https://doi.org/10.1016/j.enconman.2006.02.030
  17. Rolfsman, B., 2004, Combined heat-and-power plants and district heating in a deregulated electricity market, Applied energy, Vol. 78, No.1, pp. 37-52 https://doi.org/10.1016/S0306-2619(03)00098-9
  18. Vesterlund, M., Toffolo, A., Dahl, J., 2017, Optimization of multi-source complex district heating network, a case study. Energy, Vol. 126, pp. 53-63 https://doi.org/10.1016/j.energy.2017.03.018