
J. Inf. Technol. Appl. Manag. 24(3): 73~92, September 2017 ISSN 1598-6284 (Print)

https://doi.org/10.21219/jitam.2017.24.3.073 ISSN 2508-1209 (Online)

What Should Using a Software Product and

Usability of the Software Product Be?

Seokha Koh*․Jialei Jiang**

Abstract

Usability is one of the most important concepts regarding software quality. It can be interpreted as the

goodness associated with using the software product. This paper distinguishes the goodness of an individual

using experience and the goodness of a product for using. This paper proposes a software quality view

model which classifies software quality views into two broad categories of end view and means view. End

view includes long-term view and short-term view which is classified further into performer’s view on

software activity and third party’s view on software activity. Means view includes intrinsic view and

contingency view. The analysis of ISO 25000 Series SQuaRE demonstrates the necessity to decompose

product quality model and quality in use model into five models corresponding to the software quality views

respectively. The analysis on playability shows that the universal definition of usability may be an illusion.

The results provide the theoretical basis to build a comprehensive and consistent body of knowledge

regarding software quality, which is consisted with the set of quality models and the theories explaining

the relationships among the elements of the models.

Keywords：Software Quality, Usability, Quality in Use, Playability, ISO/IEC 25000 Series SQuaRE (The

International Standard Organization 25000 Series Systems and software Quality Requirement

and Evaluation)

1)

Received：2017. 07. 03. Revised : 2017. 09. 05. Final Acceptance：2017. 09. 18.

※ We appreciate Sangsan Brick Co. supporting this research by the development fund of the Chungbuk National University.
** Corresponding Author, Professor, Department of Management Information Systems, Chungbuk National University, 1 Chungdae-ro

Seowon-gu Cheongju, Chungbuk 28644, Korea, Tel：+82-43-261-2356, Fax：+82-43-273-2355, e-mail：shkoh@cbnu.ac.kr
** Doctoral Student, Department of Management Information Systems, Chungbuk National University, e-mail：365678785@qq.com

74 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

Using is the ultimate goal of all kinds of pro-

duct including software. A software product

should be good to use. In this paper, the usability

of software is defined as the goodness for using.

This generic definition will be elaborated later

in this paper.

ISO’s software quality models generally re-

gard usability as the property of the software

product. Specifically, ISO 25000 Series SQuaRE

defines usability as ‘‘the degree to which a pro-

duct or system can be used by specified users

to achieve specified goals with effectiveness, ef-

ficiency and satisfaction in a specified context

of use”1) [ISO/IEC 25010:2011, p. 12]. SQuaRE

defines quality in use almost the same as us-

ability except that it “includes freedom from risk

and context coverage” [ISO/IEC 25010:2011, p.

8, 12, 18; ISO/IEC 25022:2016]. It emphasizes

that “usability can either be specified or meas-

ured as a product characteristic in terms of its

sub-characteristics, or specified or measured

directly by measures that are subset of quality

in use” [ISO/IEC 25010:2011, p. 9, 12]. However,

their sub-characteristics and measures are quite

different. So, they represent different things in

fact.

Gonzalez Sanchez et al. [2009a, 2009b] define

playability as “a set of properties that describe

the player experience using a specific game

system whose main objective is to provide en-

joyment and entertainment.” ISO 9241-11 is the

1) In this paper, italic font denotes that corresponding
part is quoted with no or only slight changes from
the cited literature.

reference model of Gonzalez Sanchez et al.

[2009a]. They say that playability is the ex-

tension of ISO’s usability or quality in use for

the player centered video game. They, however,

specify playability as the property of using expe-

rience.

This paper distinguishes instance usability

which represents the goodness as the property

of using experience and product usability which

presents the goodness as the property of soft-

ware product. This paper also critically reviews

SQuaRE, which is the extended version of ISO

9241-11.

SQuaRE is the most extensive software qua-

lity model ever existed, which contains product

quality model and quality in use model which

contain 13 characteristics, 40 sub-characteri-

stics, and 123 measures for systems and soft-

ware quality in total. The chief goal of SQuaRE

is to assist software engineers to develop soft-

ware products with high quality. It is an enor-

mous and elaborated body of knowledge about

software quality which deserves appreciation. It,

however, suffers from ambiguity, inconsistency,

and contradictions making it un-suitable for or-

dinary software engineers to measure the design

quality of software product [Al-Kilidar, 2005;

Haboush et al., 2014; Kitchenham and Pfleeger,

1996; Koh, 2016, 2017a, 2017b; Koh and Whang,

2016].

It is the purpose of this paper to provide theo-

retical basis to resolve the conceptual vagueness

and inconsistency associated with software qual-

ity models including SQuaRE. It is beyond the

scope of this paper, however, to present precise

and rigorous definitions of associated concepts.

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 75

2. Usability Instance and Product

Usability

Koh [2017a] defines software activity as the

activity which is performed on the software

product by a person or a group of persons. In

this paper, using is defined as the interaction be-

tween the software product and a person or a

group of persons through the user interface of

the product, which is distinguished from the fol-

lowing types of software activity:

∙Studying the product: A type of software

activity to increase the user’s knowledge or

expertise about the product itself. It can be

performed on other materials too.

∙Testing: A type of software activity to find

out whether the product performs as intended

or required.

∙Customizing user interface: A type of soft-

ware activity to make the product better to

use.

According to above definitions, using can be

performed only on the execution of a software

product in operation. As the result, maintaining

and porting (transferring) are excluded from

using.

Studying the product and customizing user

interface are frequently regarded as a sub-type

of using. As the result, study-ability (or learn-

ability) or customizability are frequently classi-

fied as sub-characteristics or measures of us-

ability [Gonzalez Sanchez et al., 2009a, 2009b;

ISO 9126-1:2001, ISO 25010:2011, ISO 25023:2017,

Microsoft Corporation, 2010; Nielson, 2016]. They,

however, can occur independently with using

[Koh, 2017b]. Accessing is another example of

software activity which can occur independently

with using: A person may access a software

product, for example, to test or study it, or cus-

tomize its interface.

∙Instance of using: The sequence of using

actions to accomplish specific goals. It in-

cludes the immediate results or effects of the

actions too.

∙Instance of playing: The continuation of us-

ing a game software product to play. It is a

sub-type of the using instance.

∙Usability function: The function by which

the usability of the using instance is deter-

mined. It is typically defined in terms of a set

of evaluation criteria such as, for example,

effectiveness, efficiency, and satisfaction, by

which the goodness of using instance is

defined. Multiple usability function can be de-

fined simultaneously.

∙Instance of usability: The value of usability

function of a using instance. If multiple us-

ability function is defined, then multiple dis-

tinctive usability instances may exist for a

using instance. The usability instance is as-

sumed to be determined regardless of mea-

surement.

∙Usability of the software product: The

mean of all usability instances associated with

a software product. It is not determined until

the product is retired. So, it can be only esti-

mated during its lifetime.

Instance of using, instance of playing, instance

of usability, and usability of software product

76 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

will be called using instance, playing instance,

usability instance, and product usability respec-

tively, in short. The typical example of using in-

stance is completing a user task (“activities per-

formed by the user (using software product) to-

wards a specified goal”) of SQuaRE [ISO/IEC

25023:2016 pp. 4, 37]. The user task includes activi-

ties either physical or cognitive [ISO/IEC 25023:

2016 p. 4]. As a matter of course, every physical

activity requires cognitive activities. The task

which is composed with only cognitive activities,

however, is not regarded as a using instance.

SQuaRE also defines a task as “a function that

needs to be accomplished within a defined period

of time, where the function mentioned here is

the software itself” [ISO/IEC 25021:2012, p. 22].

In this definition, the term task is amount to task

type, in fact. In this paper, the task type corre-

sponds to the type of using instance.

It is noticeable that the term task is especially

appropriate for the business application software

which is developed to support the work in an

organization. It can be very unnatural or irrele-

vant to define tasks for some type of software

such as, for example, game software. In that re-

gard, using instance is distinguished from the

performance of task.

Many existing sub-characteristics of usability

correspond to the evaluation criteria of usability

instance. Effectiveness, efficiency, and satisfac-

tion are typical examples of such sub-charac-

teristics. They correspond to the criteria by

which the using instance is evaluated. A soft-

ware product is evaluated to be good for using

if the instances of using it are generally effec-

tive, efficient, or satisfactory. In this paper, the

set of evaluation criteria is used as the synonym

of usability function.

Beside specification of the evaluation criteria,

the usability function should include operational

definitions to assign a specific value of the criteria

to each using instance. Both evaluation criteria

and their operational definitions constitute the

usability function. Multiple usability functions

which shares common evaluation criteria can be

defined. Moreover, various usability functions

which do not share even the evaluation criteria

can be defined. What matters is which one is

more useful. The usefulness will vary case by

case.

An individual usability instance can be hardly

accepted to represent the characteristic of the

software product since it is generally affected

by the system, context, and the performer of us-

ing instances. The product usability can be ac-

cepted as the characteristic of the software pro-

duct since the influence of the systems, con-

texts, and users is factored out.

3. What Can be Included in Usability:

Information that Can be Obtained

from Each Individual Using Instance

3.1 Effectiveness and Efficiency: Third party’s

View

According to Oxford Living Dictionaries, ef-

fective means “successful in producing a de-

sired or intended result”. Software quality litera-

ture typically defines effectiveness in terms of

“achievement of goals.” Software effectiveness

is typically defined to be concerned with only

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 77

Quality Model Definition Remarks

Quality in Use Accuracy and completeness with which users achieve specified goals. Goals are
pre-specified by

third party
GS et al.
[2009a]

Degree to which specific users (players) can achieve the proposed goals with
precision and completeness in the context of use, the video game.

GS et al.
[2009b]

Time and resource necessary to offer players a fun and entertaining experience
whilst they achieve the game’s various objectives and reach the final goal.

Virtually identical
to efficiency

<Table 1> Definitions of Effectiveness: ISO 25000 SQuaRE and Gonzalez Sanchez et al. [2009a, 2009b]

Quality
Model

Metric Description Remarks

Quality in
Use

Task
completed

Proportion of the tasks that are completed
correctly without assistance.

Under-estimate the true value.

Focused on detecting bad design
which causes tasks not to be
completed or objectives not to be
achived.

Objective
achieved

Proportion of the objectives that are achieved
correctly without assistance.

Errors in a task Number of errors made by the user during a task. Errors are more closely related with
efficiency.

Effectiveness is not affected if goals
are achieved even if errors are made.

Focused on detecting faults which
causes errors.

Task with
errors

Proportion of the tasks where errors were made
by the users.

Task error
intensity

Proportion of users making an error.

GS et al.
[2009a]

Goal
effectiveness

What proportion of the goals is achieved correctly? Virtually identical to those of Quality
in Use.

Represent the third party’s view.

Do not concern the intensions of
individual users.

Goal completion What proportion of the goals are completed

Number of
attempt

What is the frequency of attempts?

<Table 2> Metrics of Effectiveness: ISO 25000 SQuaRE and Gonzalez Sanchez et al. [2009a]

whether and how well goals are achieved but

not to be concerned with how the goals are

achieved. As the result, for example, SQuaRE

emphasizes that “effectiveness measures do

not take account of how the goals were ach-

ieved, only the extent to which they were ach-

ieved” [ISO/IEC 25022:2016, p. 10]. SQuaRE al-

so specifies the goals to be specified (refer

<Table 1>).

SQuaRE define measure as “variable to which

a value is assigned as the result of measure-

ment’ as the noun or ‘make a measurement” as

the verb, where measurement is defined as “a

set of operations having the object of determin-

ing a value of a measure” [ISO/IEC 25010:2011,

p. 19]. Metric is typically defined as the ratio

or interval measure which generates the data

that can be added [Cooper and Schidler, 2008;

p. 545]. Every quality model requires quality da-

ta subject to summation. In this paper, measure

and metric will be used inter-changeably.

Measure, however, will be used when it is nec-

essary to denote that it is the metric of SQuaRE.

Among SQuaRE’s five measures of effective-

ness, ‘errors in a task,’ ‘task with errors,’ and

‘task error intensity’ focus on errors (refer Table

2). However, users can complete their tasks or

achieve their objectives despite of errors. Since,

these measures do not conform to the definition

of effectiveness.

78 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Quality
Model

Definition Remarks

Quality in
Use

Capability of the software product to enable users to expend appropriate
amounts of resources in relation to the effectiveness achieved in a
specified context of use.

Defined objectively.

Can represent both the third party’s
view and the user’s view.

GS et al.
[2009a]

The degree to which specific users (players) can achieve the goals
proposed by investing an appropriate amount of resources in relation
to the effectiveness achieved in a context of use, the video game.

Although it is defined in the term of
achievement of goals, it metrics are
practically the same as those of Quality
in Use.

<Table 3> Definitions of Efficiency: ISO 25000 SQuaRE and Gonzalez Sanchez et al. [2009a]

Quality
Model

Metric Description Remarks

Quality in
Use

Task time Time taken to successfully complete a task.

‘Task time’ has universal and common
meanings, and can be measured the
most straightforwardly.

The others represent the view of
developers or maintainers: They can
provide the information about faults
or bad design.

Time efficiency
Efficiency with which users achieve their
objectives over time when using the system

Productive time
ratio

Proportion of the time that the user is performing
productive actions.

Unnecessary
actions

Proportion of the actions performed by the user
that were not necessary to achieve the task.

Consequence of
fatigue

Decrease in human performance after continuous
use.

Cost effectiveness Cost-effectiveness of the user. Regarding the user.

GS et al.
[2009a]

Goal time How long does it take to complete a goal? The same as ‘task time.’

Goal efficiency How efficient are the users?

Regarding the user.Relative user
efficiency

How efficient is a player compared to an export?

<Table 4> Metrics of Efficiency: ISO 25000 SQuaRE and Gonzalez Sanchez et al. [2009a]

‘Tasks completed’ and ‘objectives achieved’

ignore the tasks partially completed and the ob-

jectives partially achieved respectively to sys-

tematically underestimate the true value of ef-

fectiveness. Moreover, ‘tasks completed’ conforms

to the definition of effectiveness only if ‘achie-

ving the goals’ is specified as ‘completing the

tasks.’ Rather, the focus of these measures is

given on the uncompleted tasks and unachieved

objectives which can be the symptoms of bad

system design [ISO/IEC 25022:2016, p. 10].

All the effectiveness measures of SQuaRE fo-

cus on the symptoms of faults or bad design.

They are designed to detect symptoms of faults

or bad design in their measurement process. The

information can be feedback to the development

process to improve the quality of the product

being developed. That is, they summarize the

results of ‘black-box’ testing. They are designed

to fulfill the need of people managing develop-

ment, acquisition, evaluation, or maintenance of

software and system [ISO/IEC 25022:2016, p. 1].

As the result, SQuaRE’s effectiveness repre-

sents the view of the third party. They are not

designed to concern the users’ intensions of in-

dividual using instances. So, the goals can and

should be specified in advance of using.

On the other hand, SQuaRE’s efficiency can

represent both the third party’s view and the

user’s view (refer <Table 3> and <Table 4>).

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 79

Among six SQuaRE’s efficiency measures, ‘task

time’ is purely objective. It has very universal

and common meanings, interpretations, or impli-

cations, and can be measured the most straight-

forwardly.

The other measures require more information

and can be affected by the measurer’s judgment.

Moreover, ‘consequence of fatigue’ does not mea-

sure efficiency itself, but measures the change

rate of efficiency, ‘Task time’ is the default mea-

sure of efficiency which should be used when-

ever possible. It is even useless to combine ‘time

efficiency,’ and ‘cost effectiveness’ in combina-

tion with ‘task time’ to increase reliability since

they are virtually redundant with ‘task time.’

‘Productive time ratio’ and ‘unnecessary actions’

produce proportions making it very hard to

combine them with ‘task time.’ Rather, they are

useful to detect faults or bad design which

causes unproductive or unnecessary actions or

fatigue. In that regards, those other than ‘task

time’ represent the view of third parties other

than the user: Developers or maintainers. Only

‘task time’ represents both the performer’s view

and the third party’s view.

Effectiveness and efficiency of Gonzalez Sanchez

et al.’s [2009a] playability are virtually the same

as the corresponding parts of SQuaRE, although

their wording is slightly different. Playing rep-

resents using the software product for fun or

pleasure. On the other hand, SQuaRE concerns

chiefly using the software product for work. It

is the reason why the task is the key word and

why efficiency matters in SQuaRE. For playing,

however, efficiency may not matter at all. For

example, the time taken may not matter as long

as it is fun or interesting. This point of argument

implies that usability should be specialized for

specific types of software.

It is especially noticeable that efficiency is ex-

cluded from Gonzalez Sanchez et al.’s [2009b]

playability. This seems very reasonable since

minimizing time taken may be irrelevant in play-

ing the video game. Effectiveness, however, is

defined virtually the same as the typical efficiency.

So, what is really excluded from the model is

effectiveness. This seems very reasonable since

the goal other than fun or pleasure can be hardly

perceived as the chief goal of playing the video

game. Again, however, the time taken to play

is really so important? It seems not so. Efficiency

may be irrelevant for some type of software such

as, for example, the game software, implying that

the general software quality model may be an

illusion.

3.2 Satisfaction: User’s View

According to Oxford Living Dictionaries, satis-

faction means “fulfillment of one’s wishes, ex-

pectations, or needs, or the pleasure derived

from this.” Definitions as software quality char-

acteristics can be classified into two groups: the

fulfillment of user’s needs and the pleasure the

user feels. The satisfaction in quality in use cor-

responds to the one while those of Gonzalez

Sanchez et al. [2009a, 2009b] correspond to the

latter (refer <Table 5>). The satisfaction as the

fulfillment of user’s needs, however, is virtually

redundant with the typical definition of effecti-

veness. SQuaRE uses it as the pleasure the user

feels, in fact: it uses satisfaction as the synonym

80 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Quality
Model

Definition Remarks

Quality in
Use

Degree to which user needs are satisfied when a product or
system is used in a specified context of use.

The performer’s view.

Can be evaluated both subjectively
or objectively

GS et al.
[2009a]

Degree to which users (players) are satisfied in a context of use,
the video game.

GS et al.
[2009b]

Gratification or pleasure derived from playing a complete video
game or from some aspect of it.

Defined to be free from context.

<Table 5> Definitions of satisfaction: ISO 25000 SQuaRE and Gonzalez Sanchez et al. [2009a, 2009b]

Quality
Model

Name Definition Remarks

Quality in
Use

Comport Degree to which the user is satisfied with physical comfort.

Do not include all the reasons why
users are satisfied: People may be
satisfied, for example, because it is
exciting or hard to play.

Pleasure
Degree to which a user obtains pleasure from fulfilling
their personal needs.

Trust
Degree to which a user or other stakeholder has confidence
that a product or system will behave as intended.

Usefulness
Degree to which a user is satisfied with their perceived
achievement of pragmatic goals, including the results of
use and the consequences of use.

<Table 6> Sub-characteristics of satisfaction: ISO 25000 SQuaRE

of pleasure in the definition of the sub-charac-

teristics of satisfaction (refer <Table 6>). From

now on in this paper, satisfaction will be used

to mean the pleasure the user feels.

Satisfaction represents the user’s view. It can-

not represent the third party’s view while effecti-

veness and efficiency can be defined to represent

the user’s view as the followings, for example:

∙Effectiveness: The user’s evaluation on how

well his/her motivation or goals are achieved.

∙Efficiency: The user’s evaluation on how

much the cost is expended.

∙Satisfaction: The user’s evaluation on how

much he/she is satisfied.

It is noticeable that context is not referred in

the definitions as in Gonzalez Sanchez et al.

[2009b]. Context is the concept associated with

sampling. There is no need to include it in the

definition of software quality. It is also notice-

able that the goals are set by the user and that

it is not necessary for the goals to be specified.

The definition of efficiency is almost the same

as that of SQuaRE. It, however, can be evaluated

subjectively by the user. The subjective evalua-

tion of time taken may not be congruent with

the objective physical time taken. For example,

the user can feel the time taken to play a game

software product to be short regardless of phys-

ical duration if it was interesting.

People may be satisfied because his/her using

experience was comfortable, pleasant, trustworthy,

or useful. People may be satisfied for various

other reasons too. One may be satisfied because

it is exciting, interesting, fascinating, stimulating.

One may be satisfied because it is hard to play

a game product. One may be satisfied because

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 81

Quality
Model

Characteristic Metric Description Remarks

Quality in
Use

Satisfaction
Overall

satisfaction
Overall satisfaction of the user.

Can be evaluated for each
using instance.

Comport Comfort
Extent to which the user is comfortable
compared to the average for this type of system.

Pleasure Pleasure
Extent to which the user obtains pleasure
compared to the average for this type of system.

Trust Trust Extent to which the user trusts the system.

Usefulness

Satisfaction
with features

Satisfaction of the user with specific system
features

Discretionary
usage

Proportion of potential users choosing to use
a system or function.

Aggregated information
which cannot be obtained
from a using instance.

Objective metrics.

May be unreliable.

Feature
utilization

Proportion of an identified set of users of the
system who use a particular feature.

The same as
description

Proportion of users making complaints

The same as
description

Proportion of user complaints about a particular
feature.

GS et al.
[2009a]

Satisfaction

Satisfaction
scale

How satisfied is the player?
Can be evaluated for each
using instance.Satisfaction

questionnaire
How satisfied is the user with specific software
feature?

Discretionary
usage

What proportion of potential users choose to
use the system Aggregated information.

Objective metrics.
May be unreliable.Socialization

What proportion of potential users choose to
use the system

<Table 7> Metrics of Satisfaction: ISO 25000 SQuaRE and Gonzalez Sanchez et al. [2009a]

it was good for just spending time.

Effectiveness and efficiency can be the reason

of satisfaction too. That is, effectiveness and ef-

ficiency can be classified as the sub-character-

istics of satisfaction in the user’s view. SQuaRE

regards usefulness as “user’s perceived ach-

ievement of pragmatic goals, including the re-

sults of use and the consequences of use” [ISO/

IEC 25010:2011, p. 9]. In this regard, satisfaction

can be used as the synonym of the user’s view

on usability. The usability in user’s view can be

estimated statistically to identify the response

of the users as customers of the product in the

market.

Satisfaction can be measured using the five

point rating scale by asking ‘how much are you

satisfied?” It can be also measured by asking

“how much do you feel following feelings or

emotions?” for various relevant feelings and emo-

tions such as, for example, comfort, pleasure,

trust, and/or usefulness and summating the re-

sults to increase the reliability of measurement.

Gonzalez Sanchez et al.’s [2009a] metrics of sat-

isfaction is inferior to those of SQuaRE in respect

of reliability (refer <Table 7>).

Satisfaction of the user can be measured

objectively. ‘Discretionary usage,’ ‘feature utili-

zation,’ ‘proportion of users making complaints,’

‘proportions of user complaints about a partic-

ular feature,’ and socialization are designed to

measure satisfaction objectively. However, they

cannot measure the user’s satisfaction on in-

82 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

dividual using instances since they need multi-

ple observations to be measured. Other objective

measures can be devised. It is well known, how-

ever, that questioning generally produces more

valid and reliable data about people’s opinion or

emotion than observation if its procedure is exe-

cuted adequately [Cooper and Schindler, 2008].

For example, users may complain about a prod-

uct for various reasons even if they think it is

useful. Users also may use a product or function

simply because there is no other alternative

available despite they are dissatisfied. Moreover,

“potential users may choose to use a system of

function” [ISO/IEC 25022:2016, p. 14] as the re-

sult of being exposed to advertising, and then

become dissatisfied. Logically, potential users

cannot choose to use a system or function be-

cause they are satisfied with it. In this respect,

‘proportion of users complaining,’ and ‘propor-

tion of user complaints about a particular fea-

ture’ can be regarded as indicators reflecting the

effectiveness of marketing activities. It is gen-

erally not a good idea to attempt to measure the

satisfaction of the user objectively.

4. What Should not be Included in

Usability: Information that Cannot

be Obtained from Each Individual

Using Instance

4.1 Context Coverage: Information that Should be

Obtained by Aggregating the Information

Obtained from Each Individual Using Instance

SQuaRE defines context of use as “users,

equipment, (hardware, software and materials),

and the physical and social environments in which

a product is used” [ISO/IEC 25010:2011, p. 18].

SQuaRE presumes that both the usability and

quality in use are affected by the context of use

and recommends estimating them contextually

[ISO/IEC 25010:2011, pp. 4-5; ISO/IEC 25022:2016,

pp. 7-8]. SQuaRE also recommends to let data

obtained from a sufficient number of users per-

forming tasks to obtain the desired level of stat-

istical confidence of effectiveness, efficiency, or

satisfaction that the target values have been ach-

ieved [ISO/IEC 25022:2016, p. 9]. Context and

contextual estimation can be regarded to corre-

spond to stratum and stratified sampling respec-

tively. Well performed, stratified sampling pro-

vides more accurate estimate than the simple ran-

dom sampling [Cooper and Schindler, 2008].

Contexts can be grouped to generate bigger

sub-populations. SQuaRE classifies contexts into

specified contexts and unspecified contexts ac-

cording to whether they are specified or not. The

proficiency of users can be the classification cri-

terion too. Task type can be the criterion too.

Role and responsibilities can determine goals

and tasks [ISO/IEC 25023:2016, p. 4]. Task types

may be categorized according to the role and re-

sponsibilities they rest on.

The means of resulting sub-populations can

be defined as follows, for example:

∙Context usability: The sub-population mean

corresponding to a specific context.

∙Specified context usability: The sub-popula-

tion mean corresponding to specified contexts.

∙Unspecified context usability: The sub-popula-

tion mean corresponding to un-specified con-

texts.

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 83

Quality
Model

Title Definition Remarks: It is regarding

Quality in
Use

Context
coverage

Degree to which a product or system can be used with
effectiveness, efficiency, freedom from risk and satisfaction in
both specified contexts of use and in contexts beyond those
initially explicitly identified.

Virtually the same as quality
in use from which context of
coverage is excluded.

Freedom
from risk:

Degree to which a product or system mitigates the
potential risk to economic status, human life, health,
or the environment.

Regarding long-term and
aggregated impact on various
entities.

GS et al.
[2009a]

Flexibility
Degree to which the video game can be used in different contexts
or by different player or game profiles. Shares similar problems of

context coverage and freedom
from riskSafety

Acceptable level of risk to the player health or data in a context
of use, the video game.

<Table 8> Definitions of Context Coverage, Freedom from Risk, Flexibility, and Safety: ISO 25000 SQuaRE and Gonzalez Sanchez et al. [2009a]

Charac-
teristic

Title Definition Remarks

Context
coverage

Context
completeness

Degree to which a product or system can be used with
effectiveness, efficiency, freedom from risk and satisfaction in
all the specified contexts of use.

Division of contexts:
Correspond to specified
context usability and
unspecified context usability,
respectivelyFlexibility

Degree to which a product or system can be used with
effectiveness, efficiency, freedom from risk and satisfaction in
contexts beyond those initially specified in the requirements.

Freedom
from risk

Economic
risk

mitigation

Degree to which a product or system mitigates the potential
risk to financial status, efficient operation, commercial property,
reputation or other resources in the intended contexts of use. Only one value is possible per

product.
Require special domain
knowledge which ordinary
SW engineer cannot be
expected to have.

Environmental
risk

mitigation

Degree to which a product or system mitigates the potential
risk to property or the environment in the intended contexts
of use.

Health and
safety risk
mitigation:

Degree to which a product or system mitigates the potential
risk to people in the intended contexts of use.

<Table 9> Sub-Characteristics of Context Coverage and Freedom from Risk: ISO 25000 SQuaRE

∙Proficient user usability: The sub-popula-

tion mean corresponding to proficient users.

∙Low-proficient user usability: The sub-popula-

tion mean corresponding to un-proficient users.

∙Task type/function usability: The sub-popula-

tion mean corresponding to a task type or a

function.

∙Role/responsibility usability: The sub-popula-

tion means corresponding to a role or a res-

ponsibility.

The difference between the definition of qual-

ity in use and that of context coverage rest on

whether the clause “in/beyond contexts initially

explicitly identified” is added or not (refer Table

8 and 9). The definition of SQuaRE’s context

coverage is virtually the same as that of quality

in use from which context coverage is excluded.

That is, context coverage generates circular

reference in which the whole includes itself as

its part. On the other hand, context usability in-

cluding its varieties is conceptually clear. Con-

text coverage should be excluded from the sub-

characteristics of quality in use.

84 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Quality
Model

Charac-
teristic

Metric Definition Remarks

Quality in
Use

Context
completeness

Context
completeness

Proportion of the intended contexts of use in
which a product or system can be used with
acceptable usability and risk Require the

aggregated
information regarding
contexts or
sub-populations.

Flexibility

Flexible context
of use

Extent to which the product can be used in
additional contexts of use with no modifications
or only simple modifications

Proficiency
independence

Extent to which the product can be used by
people without specific knowledge, skills or
experience

Product flexibility
Ease with which a product can be modified to
meet additional user requirements

Regarding changing.

Economic risk
mitigation

ROI Return on investment

Require long-term and
aggregated
information with
which business people
usually deal much
better than SW
engineers.

Time to
achieve ROI

Time taken to achieve the expected ROI

Business
performance

Profitability or sales compared to a target

Benefits of IT
Investment

Measure of the benefits of IT investment
compared to a target

Service to
customers

Extent to which the intended level of service
to customers is achieved

Website visitors
converted to
customers

Proportion of visitors to a particular web page(s)
who become customers

Revenue from
each customer

Revenue from each customer

Errors with
economic

consequences

Proportion of usage situations where there are
human or system errors with economic
consequences

Environmental
risk mitigation

Environmental
impact

Environmental impact of the manufacture and
use of the product or system compared to a target

Chiefly determined by
system

Health and
safety risk
mitigation

User health
reporting frequency

Proportion of users of the product who report
health problems arising from usage Require long-term and

aggregated
information with
which ordinary SW
engineers cannot deal
properly.

User health and
safety impact

Health and safety impact on users of the product

Safety of people
affected by use of

the system

Incidence of hazard to people affected by use
of the system

GS et al
[2009a]

Flexibility

Accessibility
What proportion of the goals can be achieved
by using alternative ways of interaction?

Chiefly determined by
system

Personalization
What proportion of the personalization options
are used by the players?

Regarding
customizing

Safety

User health and
safety

What is the incidence of health problems among
users of the product?

Ordinary users cannot
provide necessary
information.Software damage What is the incidence of software damage?

<Table 10> Metrics of Context Coverage, Freedom from Risk, Flexibility, and Safety: ISO 25000 SQuaRE and Gonzalez Sanchez et al. [2009a]

Among four measures of ‘context coverage,’

‘product flexibility’ is regarding changing the

product, but not regarding using the product

(refer <Table 10>). In fact, it is redundant with

modifiability of product quality model [ISO/IEC

25023:2016, pp. 21-22]. It is the intrinsic and in-

variant property of the software product [Koh,

2017a, 2017b].

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 85

The other measures represent some useful

concepts. However, they can be more clearly ex-

pressed in terms of context usability and its

varieties. For example, ‘proficiency independence’

can be replaced with the ratio or difference of

proficient user usability and low-proficient user

usability. The pair of proficient user usability and

low-proficient user usability provides more in-

formation more clearly than ‘proficiency inde-

pendence’ is seemingly expected to provide. The

pair of specified context usability and unspecified

context usability provides more information more

clearly than ‘flexible context of use’ is seemingly

expected to provide too. The ratio or difference

of specified context usability and unspecified

context usability can be used as an index. ‘Context

completeness’ can be rephrased as ‘the proportion

of the intended contexts whose context usability

is above the acceptable criteria.’

‘Context coverage’ and its sub-elements rep-

resent some useful concepts. They, however,

cannot be sub-elements of quality in use nor

usability. Context usability and its varieties are

conceptually clear and can provide more in-

formation than they can.

Gonzalez Sanchez et al.’s [2009a] flexibility

corresponds to and shares the same problem

with ‘context coverage.’ Its metrics, however,

are quite different from those of ‘context cover-

age’ and do not measures what is seemingly ex-

pected to represented by flexibility.

4.2 Freedom from Risk: Long-term and

Aggregated Effects

SQuaRE defines risk as “a function of the

probability of occurrence of a given threat and

the potential adverse consequences of that threat’s

occurrence” [ISO/IEC 25010:2011, p. 9]. It is ob-

vious that probability or proportion cannot be

inferred from a using instance. It is aggregated

information which cannot be obtained from an

individual using instance unlike effectiveness,

efficiency, and satisfaction.

The measures of ‘freedom from risk,’ how-

ever, do not measure probability or proportion

in fact. They measures the long-term and ag-

gregated impact which various activities per-

formed on a software product such as using, de-

veloping, changing, and so on exert on various

entities. For example, ‘return on investment’ re-

quires long-term and aggregated information to

measure. They cannot be obtained from a single

using instance. The metrics that can be obtained

from individual using instances respectively and

the metrics that can be obtained by aggregating

such data should be separated into distinctive

models.

Moreover, they require the domain knowledge

which ordinary software engineers cannot be

expected to have. For example, business people

generally can measure ‘return on investment’ of

a software product more validly than software

engineers. It is the typical issue which business

people traditionally have dealt with. It is better

to leave such issues to the specialists of corre-

sponding domains.

Among 12 measures of ‘freedom from risk,’

‘service to customers’ is regarding service level.

It is not an item associated with the product

itself. It is not a software quality metric. Other

measures and sub-characteristics may have to

86 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

be redefined to be more useful according to the

appropriate software quality view: The long-

term view. It is beyond of this paper, however,

to review and redefine individual items in depth

and details. Gonzalez Sanchez et al.’s [2009a]

safety is virtually the subset of and shares the

same problems with ‘freedom from risk.’

5. Discussions

The critical review in sections 3 and 4 shows

the discordance among characteristics, between

characteristic and its sub-characteristics, be-

tween characteristics and their metrics, and be-

tween the titles and definitions prevails in quality

in use model of SQuaRE and Gonzalez Sanchez

et al.’s [2009a, 2009b] playability. There exist

virtually the same phenomena in product quality

model of SQuaRE [Koh 2017a, 2017b]. This im-

plies that the phenomena can prevail in many

other software quality models too.

To overcome the inconsistency in product

quality model of SQuaRE, Koh [2017a, 2017b]

proposes a model of the views regarding soft-

ware quality, which classifies the views of soft-

ware quality broadly into end view and means

view. The discussions in the sections 3 and 4

show that end view can be divided into long-

term view and short-term view which can be

divided further into performer’s view on soft-

ware activity and third party’s view on software

activity. The resulting model of software quality

view becomes as the following:

∙End view: It represents the effort to find out

for what the software product should be good.

The quality characteristics in this view corre-

spond to the effects of good quality in means

view.

 - Short-term view: It focuses on short-term

effects of various software activity types.

 ･ Performer’s view on software activity:

It represents the performer’s subjective

evaluation of the software activity that

he/she has performed.

 ･Third party’s view on software activity:

It represents the interests of stakeholders

other than the performer, which are asso-

ciated with individual software activities.

 - Long-term view: It focuses on the long-

term and aggregated effects on various

stakeholders.

∙Means view: It represents the effort to make

the software product good for various ends.

The elements of this view correspond to the

causes of desirable effects. Software engi-

neers should be able to manipulate the ele-

ments to improve the quality in end view.

 - Intrinsic view: It identifies static and inva-

riant properties of the software product,

which affect the achievement of ends. It does

not change unless the product is changed.

 - Contingency view: It identifies static and

invariant emerging properties of contingen-

cies, which affect the achievement of ends.

It can change even if the product is not

changed.

Koh [2017a, 2017b] proposes the principle of

one view stating that a software quality model

should correspond to one and only one software

quality view. According to principle of one view

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 87

Title Definition Remarks

Immersion
Capacity of the video game contents to be believable, such that the

player becomes directly involved in the virtual game world.
Titles are of player’s view

while definitions are of

means view without

specifying the factors that

cause the effects specified by

titles.

Motivation
Set of game characteristics that prompt a player to realize specific

actions and continue undertaking them until they are completed.

Socialization
Set of game attributes elements and resources that promote the social

dimension of the game experience in a group scenario.

Emotion
Player’s involuntary impulse in response to the stimulus of the video

game that induces feelings or a chain reaction of automatic behaviors.

It is uncertain how it is

differentiate from satisfaction.

Learnability

Player’s capacity to understand and master the game’s system and

mechanics (objectives, rules, how to interact with the video game, and

so on).

Contingency factor: the trait

of player

<Table 11> The Rest Sub-Characteristics of Playability: Gonzalez Sanchez et al. [2009b]

and the new model of software quality view, at

least, five software quality models are required:

Long-term effect model, activity quality model

in performer’s view, activity quality model in

third party’s view, intrinsic quality model, and

contingency quality model.

Quality in use model includes the elements of

performer’s view on software activity, third par-

ty’s view on software activity, and long-term

view. Product quality model includes the ele-

ments of intrinsic view and contingency view

as well as end view [Koh 2017a, 2017b]. As the

result, SQuaRE includes all the five views in its

two quality models of software and system vio-

lating the principle of one view.

Product quality model and quality in use mod-

el are too big and complex even for expert soft-

ware engineers to comprehend properly [Koh

2016, 2017a, 2017b]. They include even the ele-

ments that can be obtained by aggregating the

data regarding other elements. It is the main

reason why there are so many discords in the

models. It is almost impossible for ordinary soft-

ware engineers to deal with the models properly.

The elements in SQuaRE should be reclassified

into a set of smaller models which ordinary soft-

ware engineers can deal with properly. The

cause-and-effect relationships among the ele-

ments of the models should be elucidated too.

<Table 11> shows another example of dis-

cordance. Gonzalez Sanchez et al.’s [2009b] play-

ability consists with satisfaction, effectiveness,

and other 5 characteristics (refer <Table 11>).

Among them, it is uncertain how emotion is dif-

ferentiated form satisfaction. Emotion can be re-

garded as an aspect of satisfaction. It is classi-

fied as a sub-characteristic of satisfaction in

Gonzalez Sanchez et al.’s [2009a].

However, the definitions of immersion, moti-

vation, and socialization do not describe what

their titles typically represent. They represent

the factors which affect the titles without speci-

fying what the factors are. So, the audiences

should figure out by themselves both what the

titles mean and the factors that affect the titles.

Confusion arises as the result. The meaning of

immersion, motivation, and socialization should

be defined specifically and clearly in a model and

the factors which contribute to increase emotion,

immersion, motivation, and socialization should

88 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

be specified in the other models. The theory

which explains the cause-and-effect relation-

ship among the elements in the models should

be developed too.

Learnability also represents the factor which

can affect playability. It, however, is not regard-

ing the software. It is contingency factor.

SQuaRE’s definitions of effectiveness and ef-

ficiency may be especially appropriate for busi-

ness application software to be used in the work-

place. They, however, may be inappropriate for

some kind of software such as, for example, the

video game. Gonzalez Sanchez et al.’s [2009a,

2009b] playability illustrates the point of argu-

ment very well. Sub-characteristics and metrics

of usability should be defined variously accord-

ing to the types of software.

6. Conclusions

This paper proposes the expended model of

software quality view which classifies the views

on software quality into two broad categories

of end view and means view. End view includes

long-term view and short-term view which is

classified further into performer’s view on soft-

ware activity and third party’s view on software

activity. Means view includes intrinsic view and

contingency view. According to the expended

software quality view and Koh’s [2017a, 2017b]

principle of one view, at least, following five

software quality models are required: Long-

term effect model, activity quality model in per-

former’s view, activity quality model in third

party’s view, intrinsic quality model, and con-

tingency quality model.

Quality in use model of ISO 25000 Series

SQuaRE includes the elements of performer’s

view on software activity, third party’s view on

software activity, and long-term view. It in-

cludes even the elements that can be obtained

by aggregating the data regarding other elements.

SQuaRE’s product quality model includes the ele-

ments of intrinsic view and contingency view

as well as end view [Koh 2017a, 2017b]. As the

result, SQuaRE includes all the five views in its

two quality models of software and system vio-

lating the principle of one view, which is the main

reason why there are so many discords in the

models. It is almost impossible for ordinary soft-

ware engineers to deal with the models properly.

The elements in SQuaRE should be classified

into a set of smaller models which ordinary soft-

ware engineers can deal with properly. Effec-

tiveness and efficiency should be classified into

the third party’s view on software activity; sat-

isfaction into the performer’s view on software

activity; ‘freedom form risk’ into long-term view.

‘Context coverage’ should be eliminated.

This paper suggests restricting the term us-

ing to denote the type of software activity in

which a person interacts with a software prod-

uct through user interface. The software activ-

ity such as studying, testing, and customizing

is excluded from using although they involve

interacting with a software product through

user interface. This approach sharply contrasts

with that of ISO 25000 Series SQuaRE in which

using encompasses various software activities

performed by various stakeholders such as “pri-

mary user (person who interact with the system

to achieve the primary goals), secondary users

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 89

(person who provide support, for example. con-

tent provider, system manager/administrator,

security manager, maintainer, analyzer, porter,

installer), and indirect user (person who re-

ceives output, but does not interact with sys-

tem)” [ISO/IEC 25010:2011, pp. 5-6].

This paper also introduces the notion of using

instance, usability function, and usability instance.

Using instance is the sequence of using actions

performed on a software product to accomplish

specific goals. It includes the immediate results

or effects of the actions too. Playing instance

is a special type of using instance.

Usability function is the function by which the

usability of using instance is determined. It is

typically defined in terms of a set of evaluation

criteria such as, for example, effectiveness, effi-

ciency, and satisfaction, by which the goodness

of the using instance is defined. Multiple us-

ability function can be defined simultaneously.

Usability instance is the value of usability func-

tion of the using instance. If multiple usability

function is defined, then multiple distinctive us-

ability instances can exist for a using instance.

The usability instance is assumed to be de-

termined regardless the using instance is meas-

ured or not. The individual usability instance

cannot be regarded as the property of the soft-

ware product. The usability of a software prod-

uct is defined as the population mean of usability

instances from the product. The product us-

ability can be regarded as the property of soft-

ware product since the effects of contingency

factors are factored out.

This paper analysis why SQuaRE is so diffi-

cult to comprehend. The results demonstrate

well the need to decompose product quality

model and quality in use model of SQuaRE into

five, at least, small and easy-to-understand

models which are consisted with homogeneous

elements. This paper also provides the theoreti-

cal basis to customize usability according to

various types of software.

It is beyond the scope of this paper to com-

plete elaborated software quality models or to

present precise definitions of various concepts

or terminologies. The system of software qual-

ity models and theories to explain the relation-

ships among the elements of the models should

be developed. They will constitute a consistent

and comprehensive body of knowledge regard-

ing software quality.

References

[1] Al-Kilidar, H., Cox, K., and Kitchenham, B.,

“The Use and Usefulness of the ISO/IEC

9126 Quality Standard,” Proceedings of In-

ternational Symposium on Empirical Soft-

ware Engineering 2005, IEEE, 2005, pp.

126-132.

[2] Cooper, D. R. and Schindler, P. S., Business

Research Methods(10ed.), McGraw-Hill/Wirwin,

International Edition 2008.

[3] Foraker Labs, “Introduction to User-Cen-

tered Design,” http://www.usabilityfirst.com/

about-usability/introduction-to-user-

centered-design, 2002 (reference date: 17/

04/2017).

[4] Gonzalez Sanchez, J. L., Montero Simarro, F.,

Padilla Zea, N., and Guitierrez Vela, F. L.,

"Playability as Extension of Quality in Use

90 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

in Video Games," Proceedings of the Second

International Workshop on the Interplay

between Usability Evaluation and Software

Development (I-USED’09), Uppsala, Sweden,

August 24, 2009a.

[5] Gonzalez Sanchez, J. L., Zea, N. P., and

Gutierrez Vela, F. L., “Playability: How to

Identify the Player Experience in a Vedio

Game," Proceedings of IFIP Conference

on Human-Computer Interaction: Human-

Computer Interaction-INTERACT 2009,

2009b, pp. 356-359.

[6] Haboush, A., Alnabhan, M., AL-Badareen,

A., Al-Nawayseh, M., and EL-Zagmouri,

B., “Investigating Software Maintainability

Development: A Case for ISO 9126,” Inter-

national J. of Computer Science Issues (IJCSI),

Vol. 11, No. 2, 2014, pp. 18-23.

[7] ISO/ IEC 25010:2011, Systems and Software

Engineering-Systems and Software Quality

Requirements and Evaluation (SQuaRE)-

System and Software Quality Models, ISO,

2011.

[8] ISO/IEC 9126-1:2001, Software Enginee-

ring-Product Quality-Part I: Quality Model,

ISO, 2001.

[9] ISO/IEC 9241-11:1998, Ergonomic Require-

ments for Office Work with Visual Display

Terminals (VDTs)-Part 11: Guidance on

Usability, ISO, 1998.

[10] ISO/IEC 25021:2012, Systems and Software

Engineering-Systems and Software Quality

Requirements and Evaluation (SQuaRE)-

Quality Measure Elements, ISO, 2012.

[11] ISO/IEC 25022:2016, Systems and Software

EngineeringSystems and Software Quality

Requirements and Evaluation (SQuaRE)-

Measurement of Quality in Use, ISO, 2016.

[12] ISO/IEC 25023:2016, Systems and Software

Engineering-Systems and Software Quality

Requirements and Evaluation (SQuaRE)-

Measurement of system and Software Pro-

duct Quality, ISO, 2016.

[13] Kitchenham, B. and Pfleeger, S. L., “Soft-

ware Quality: The Elusive Target [special

issue section],” Software, IEEE, Vol. 13, 1996,

pp. 12-21.

[14] Koh, S. and Whang, J., “A Critical Review

on ISO/IEC 25000 SQuaRE Model,” Pro-

ceedings of the 15th International Confe-

rence on IT Applications and Manage-

ment: Mobility, Culture and Tourism in the

Digitalized World, (ITAM15), 2016, pp. 42-52.

[15] Koh, S., “Cause-and-Effect Perspective on

Software Quality: Application to ISO/IEC

25000 Series SQuaRE’s Product Quality

Model,” Journal of Information Technology

Applications & Management, Vol. 23, No.

3, 2016, pp. 71-86.

[16] Koh, S., “The Checklist for System and

Software Product Quality Implied in the

Product Quality Model of ISO/IEC 25000

Series SQuaRE,” Proceedings of 17th Inter-

national Conference on IT Applications and

Management: Babolsar, Iran, 2017a, pp. 126-

136.

[17] Koh. S., “The Principle of One Quality View

and Decomposition of Product Quality

Model of ISO/IEC 25000 Series SQuaRE,”

Asian Journal of Information and Commu-

nications, Vol. 9, No. 1, 2017b, pp. 101-114.

[18] Microsoft Corporation, “Usability in Soft-

Vol.24 No.3 What Should Using a Software Product and Usability of the Software Product Be? 91

ware Design,” https://msdn.microsoft.com/

en-us/library/ms997577.aspx, 2000 (reference

date: 17/04/2017).

[19] Nielsen, J., “Usability 101: Introduction to

Usability,” Nielsen Norman Group, https://

www.nngroup.com/articles/usability-101-

introduction-to-usability, 2012 (reference

date: 17/04/2017).

[20] Oxford Learner’s Dictionary, reference date:

05/16/2016.

92 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Author Profile

Seokha Koh

Seokha Koh is the professor

of the Department of MIS,

Chungbuk National University.

His current primary research

areas include Software Quality

Management, Business Process Modeling, Soft-

ware Architecture, Project Management, and

Software Engineering.

Jialei Jiang

Jialei Jiang is a Ph.D. Candidate

in College of Business Depart-

ment of Chungbuk National

University. He has received

master’s degree and bachelor’s

degree in The Dept. of Management informa-

tion Systems from Chungbuk National Uni-

versity. His major research areas include Busi-

ness Management, Information Technology, Busi-

ness Statistics, Software Project Management,

Management and IT.

