DOI QR코드

DOI QR Code

Behavioral Response of Tubifex tubifex to Changes of Water Temperature and Substrate Composition

수온 및 하상 변화에 대한 참실지렁이 (Tubifex tubifex)의 행동 반응

  • Kang, Hyejin (Department of Biology, Kyung Hee University) ;
  • Bae, Mi-Jung (Freshwater Biodiversity Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Park, Young-Seuk (Department of Biology, Kyung Hee University)
  • 강혜진 (경희대학교 생물학과) ;
  • 배미정 (국립낙동강생물자원관 담수생물다양성연구실) ;
  • 박영석 (경희대학교 생물학과)
  • Received : 2017.08.31
  • Accepted : 2017.09.23
  • Published : 2017.09.30

Abstract

In this study, we investigated the response of freshwater oligochaete, Tubifex tubifex, to the water temperature changes and the differences of substrate composition in a laboratory condition. The changes of body shape were observed in a test cage according to the water temperature change ranging from $10^{\circ}C$ to $30^{\circ}C$ with $2^{\circ}C$ interval every 10 minutes. The substrate preference was observed with four different substrate composition from silt-clay to coarse sand. Our results displayed that T. tubifex preferred substrates with the smallest particle size (<0.063 mm). The water temperature influenced on the activity and body shape of T. tubifex, showing low activity with the coiled and constricted body shapes at lower temperature and high activity with relaxed linear body shapes at higher temperature.

담수에 서식하는 참실지렁이(Tubifex tubifex)가 수온 변화에 따라 보이는 반응과 하상의 구성에 대한 선호성을 분석하였다. 수온이 증가할 때 참실지렁이는 활동성이 증가하였다. $10{\sim}16^{\circ}C$의 낮은 온도에서 50% 이상의 개체가 몸을 수축하고 꼬여있는 상태로 관찰되었으며, $24^{\circ}C$ 이상의 온도에서는 대부분의 개체가 몸을 꼬임 없이 이완시킨 상태로 관찰되었다. 하상입자의 크기가 다른 여러 하상을 이용한 실험에서는 가장 작은 입자인 미사-진흙 (silt-clay, <0.063 mm)을 선호하였다.

Keywords

References

  1. Aston, R.J. 1968. The effect of temperature on the life cycle, growth and fecundity of Branchiura sowerbyi (Oligochaeta: Tubificidae). Journal of Zoology 154(1): 29-40. https://doi.org/10.1111/j.1469-7998.1968.tb05038.x
  2. Bonacina, C., A. Pasteris, G. Bonomi and D. Marzuoli. 1994. Quantitative observations on the population ecology of Branchiura sowerbyi (Oligochaeta, Tubificidae). Aquatic Oligochaete Biology V: 267-274.
  3. Brinkhurst, R.O. 1967. The distribution of aquatic oligochaetes in Saginaw Bay, Lake Huron. Limnology and Oceanography 12(1): 137-143. https://doi.org/10.4319/lo.1967.12.1.0137
  4. Brinkhurst, R.O. and C.R. Kennedy. 1965. Studies on the biology of the Tubificidae (Annelida, Oligochaeta) in a polluted stream. The Journal of Animal Ecology 34(2): 429- 443. https://doi.org/10.2307/2659
  5. Brinkhurst, R.O., P. Rodriguez, T.-S. Chon and T.-S. Kwon. 1994. A new genus of Lumbriculidae (Oligochaeta) from Korea. Canadian journal of zoology 72(11): 1960-1966. https://doi.org/10.1139/z94-267
  6. Brittain, J.E. 1983. The influence of temperature on nymphal growth rates in mountain stoneflies (Plecoptera). Ecology 64(3): 440-446. https://doi.org/10.2307/1939962
  7. Chapman, P.M., M.A. Farrell and R.O. Brinkhurst. 1982. Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquatic Toxicology 2(1): 47-67. https://doi.org/10.1016/0166-445X(82)90005-4
  8. Choi, Y.H. 2005. The Blood worm (Limnodrilus socialis̓s) Using Capacity for Treatment of Aquaculture Wastewater. Masters Degree Thesis, Chungju University.
  9. Corkum, L.D., P.J. Pointing and J.J. Ciborowski. 1977. The influence of current velocity and substrate on the distribution and drift of two species of mayflies (Ephemeroptera). Canadian Journal of Zoology 55(12): 1970-1977. https://doi.org/10.1139/z77-254
  10. Cummins, K.W. and G.H. Lauff. 1969. The influence of substrate particle size on the microdistribution of stream macrobenthos. Hydrobiologia 34(2): 145-181. https://doi.org/10.1007/BF00141925
  11. de Mendiburu, F. 2017. agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-6. URL https://CRAN.R-project.org/package=agricolae
  12. Giberson, D.J. and D.M. Rosenberg. 1992. Effects of temperature, food quantity, and nymphal rearing density on life-history traits of a northern population of Hexagenia (Ephemeroptera: Ephemeridae). Journal of the North American Benthological Society 11(2): 181-193. https://doi.org/10.2307/1467384
  13. Jones, J.I., J.F. Murphy, A.L. Collins, D.A. Sear, P.S. Naden and P.D. Armitage. 2012. The impact of fine sediment on macro-invertebrates. River Research and Applications 28(8): 1055-1071. https://doi.org/10.1002/rra.1516
  14. Jun, T.S. and J.H. Park. 2005. The Blood worm, Limnodrilus socialis̓s Using Capacity for Treatment of Aquaculture Wastewater. Chungju University Theses Collection 40(1): 201-206.
  15. Kang, H., M.J. Bae and Y.S. Park. 2016. Ecotoxicological Studies Using Aquatic Oligochaetes: Review. Korean Journal of Ecology and Environment 49(4): 343-353. https://doi.org/10.11614/KSL.2016.49.4.343
  16. Ladle, M. 1971. The biology of Oligochaeta from Dorset chalk streams. Freshwater Biology 1(1): 83-97. https://doi.org/10.1111/j.1365-2427.1971.tb01547.x
  17. Lazim, M.N. and M.A. Learner. 1987. The influence of sediment composition and leaf litter on the distribution of tubificid worms (Oligochaeta). Oecologia 72(1): 131-136. https://doi.org/10.1007/BF00385057
  18. LeBlanc, R.T., R.D. Brown and J.E. FitzGibbon. 1997. Modeling the effects of land use change on the water temperature in unregulated urban streams. Journal of Environmental Management 49(4): 445-469. https://doi.org/10.1006/jema.1996.0106
  19. Lee, J. and J. Jung. 2014a. Four unrecorded species of tubificid oligochaetes (Annelida: Clitellata) in Korea. Animal Systematics, Evolution and Diversity 30(4): 240. https://doi.org/10.5635/ASED.2014.30.4.240
  20. Lee, J. and J. Jung. 2014b. Two aquatic oligochaete species, Dero dorsalis and Allonais pectinata (Annelida: Clitellata: Naididae), new to Korea. Animal Systematics, Evolution and Diversity 30(2): 119. https://doi.org/10.5635/ASED.2014.30.2.119
  21. Leppanen, M.T. and J.V. Kukkonen. 1998. Factors affecting feeding rate, reproduction and growth of an oligochaete Lumbriculus variegatus (Muller). Hydrobiologia 377(1): 183-194. https://doi.org/10.1023/A:1003252520704
  22. Lin, K.J. and S.P. Yo. 2008. The effect of organic pollution on the abundance and distribution of aquatic oligochaetes in an urban water basin, Taiwan. Hydrobiologia 596(1): 213-223. https://doi.org/10.1007/s10750-007-9098-x
  23. McMurtry, M.J., D.J. Rapport and K.E. Chua. 1983. Substrate selection by tubificid oligochaetes. Canadian Journal of Fisheries and Aquatic Sciences 40(10): 1639-1646. https://doi.org/10.1139/f83-190
  24. Nedeau, E.J., R.W. Merritt and M.G. Kaufman. 2003. The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environmental pollution 123(1): 1-13. https://doi.org/10.1016/S0269-7491(02)00363-9
  25. Park, H.J., T. Timm and Y.J. Bae. 2013. Taxonomy of the Korean freshwater Oligochaeta (Annelida) with eight species new to Korea. Entomological Research Bulletin 29(2): 180- 188.
  26. Peckarsky, B.L. 1991. Habitat selection by stream-dwelling predatory stoneflies. Canadian Journal of Fisheries and Aquatic Sciences 48(6): 1069-1076. https://doi.org/10.1139/f91-126
  27. Poddubnaya, T.L. 1980. Life cycles of mass species of Tubificidae (Oligochaeta). In Aquatic oligochaete biology (pp. 175-184). Springer US.
  28. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  29. Regier, H.A., J.A. Holmes and D. Pauly. 1990. Influence of temperature changes on aquatic ecosystems: an interpretation of empirical data. Transactions of the American Fisheries Society 119(2): 374-389. https://doi.org/10.1577/1548-8659(1990)119<0374:IOTCOA>2.3.CO;2
  30. Reynoldson, T.B., P. Rodriguez and M.M. Madrid. 1996. A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Muller, 1774) from the North American Great Lakes and Northern Spain. In Aquatic Oligochaete Biology VI (pp. 199-206). Springer Netherlands.
  31. Rodriguez, P., M. Martinez-Madrid, J.A. Arrate and E. Navarro. 2001. Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia 463(1): 133-140. https://doi.org/10.1023/A:1013199507341
  32. Seong, M.Y. and B.K. Hak. 2000. Freshwater oligochaetes (Oligochaeta, Tubificida, Naididae) from several swamps in Kyungsangnam-do, Korea. Animal Systematics, Evolution and Diversity 16(2): 239-255.
  33. Sutcliffe, D.W., T.R. Carrick and L.G. Willoughby. 1981. Effects of diet, body size, age and temperature on growth rates in the amphipod Gammarus pulex. Freshwater biology 11(2): 183-214. https://doi.org/10.1111/j.1365-2427.1981.tb01252.x
  34. Timm, T. 1999. Distribution of freshwater oligochaetes in the west and east coastal regions of the North Pacific Ocean. Hydrobiologia 406: 67-81. https://doi.org/10.1023/A:1003749519662
  35. Verdonschot, P.F. 1999. Micro-distribution of oligochaetes in a soft-bottomed lowland stream (Elsbeek; The Netherlands). Hydrobiologia 406: 149-163. https://doi.org/10.1023/A:1003796403364