DOI QR코드

DOI QR Code

Influence of Earthquake Shape on the Dynamic Behavior of Fluid in a Rectangular Structure

사각형 구조물에 저장된 유체의 동적거동에 미치는 시간-가속도 형상의 영향

  • 박건 ((주)에스디이엔지) ;
  • 홍기남 (충북대학교 토목공학과)
  • Received : 2017.06.30
  • Accepted : 2017.10.10
  • Published : 2017.11.01

Abstract

In the case of fluid storage structure, hydrostatic pressure acts on the structure due to fluid surge during an earthquake. At this time, hydrodynamic pressure of the fluid charge not only by the strength of the earthquake but also by the sloshing height of the fluid. Factors affecting the change of load include the size, width and height of the fluid storage structure and height of fluid, time-history shape, etc. This paper wanted to identify the relationship between the earthquake shape and fluid free surface shape. The sloshing height measured the height of the fluid by applying earthquake to a tank whose width 500mm and comparison of the experiment and analysis. In addition, the shape of the fluid free surface was measured while varying the shape of earthquake and effective of the shape of earthquake of the fluid was analyzed.

유체 저장 구조물의 경우 지진 시 유체의 출렁임에 의하여 구조물에 동수압이 작용한다. 이 때, 유체의 동수압은 지진의 강도뿐만 아니라 유체 자유수면의 출렁임 높이(sloshing height)에 의해서도 변화한다. 이러한 하중의 변화에 영향을 미치는 인자로는 지진파의 형상, 최대지진강도, 유체 저장 구조물의 크기, 구조물의 폭, 유체의 높이 등이 있는데, 본 논문에서는 지진파의 형상과 유체 자유수면의 출렁임 형상의 상관관계를 규명하고자 하였다. 이를 위하여 구조물의 폭이 500 mm인 수조에 실지진파를 적용시켜 유체 자유수면의 출렁임 높이를 측정하고, 수치해석을 통하여 실험과 해석의 유사성을 검증하였다. 또한, 실험과 해석의 비교를 통하여 검증된 구조해석 기법을 적용하여 인공지진파의 형상을 다양하게 변화시키면서 유체 자유수면의 출렁임 형상의 변화를 측정하고, 인공지진파의 형상이 유체 자유수면의 출렁임 형상에 미치는 영향을 분석하였다.

Keywords

References

  1. Abaqus (2013), Example Problems Guide Volume II : Other Applications and Analysis, Dassault System.
  2. George, W. Housner (1957), Dynamic Pressure on Accelerated Fluid Container, Bulletin of the Seismological Society of America, 47(1), 15-35.
  3. George, W. Housner (1963), The Dynamic Behavior of Water Tanks, Bulletin of the Seismological Society of America, 53(1), 381-387.
  4. Haroun, M. A. (1983), Vibration Studies and Test of Liquid Storage Tanks, Earthquake Engineering and Structural Dynamic, 11, 119-206.
  5. Kim, Y. I., Nam, B. W., and Kim, Y. H. (2007), Study on the Effects of Computation Parameters in SPH Method, Journal of the Society of Naval Architects of Korea, 44(4), 398-407. https://doi.org/10.3744/SNAK.2007.44.4.398
  6. Kim, Y. S., Kim, J. M., Choun, Y. S., and Yun, C. B. (1992), Seismic Analysis of Rectangular Liquid Storage Structures Using Fluid Elements, Journal of Ocean Engineering and Technology, 6(2), 206-214.
  7. Korea Electric Power Industry Code, KEPIC STB (2005), Seismic Analysis and Seismic Capacity Evaluation of Nuclear Facilities, 2005 Edition and 2008 Supplement.
  8. Lay, K. S. (1993), Seismic Coupled Modeling of Axisymmetric Tanks Containing Liquid, Journal of the Technical Council of ASCE, 747-763.
  9. Lee, C. G. and Yun, C. B. (1987), Seismic Analysis of Liquid Storage Tanks Considering Shell Flexibility, Journal of the Korean Society of Civil Engineers, 7(4), 21-29.
  10. Matej, V., Heiner, M., Alexander, H., and Zoran, R. (2004), Simulation of Fuel Sloshing -Comparative Study, LS-DYNA Anwenderforum, Bamberg.
  11. U.S. Atomic Energy Commision (1963), Nuclear Reactors and Earthquakes, TID-7024, Washington, D. C., 367-390.
  12. U.S. NRC (1973a), Design Response Spectra for Seismic Design of Nuclear Power Plants, Regulatory Guide 1.60, Rev. 1.
  13. U.S. NRC (1973b), Damping Values for Seismic Design of Nuclear Power Plants, Regulatory Guide 1.61, Rev. 1.
  14. U.S. NRC (1978), Development of Floor Design Response Spectra for Seismic Design of Floor Supported Equipment or Components, Regulatory Guide 1.122, Rev. 1.
  15. Veletsos, A. S. (1974), Seismic Effects in Flexible Liquid Storage Tanks, Proc. Int. Assoc. for Earthquake Eng., Rome, Italy, 1, 630-639.
  16. Veletsos, A. S. and Yang, J. Y. (1977), Earthquake Response of Liquid Storage Tanks, Adv. Civil Eng. Through Eng. Mech, ASEC, 1-24.