DOI QR코드

DOI QR Code

Evaluation of Relationship between Strength and Resistance to Chloride in Concrete Containing Fly Ash with Ages

Fly Ash를 혼입한 콘크리트의 재령에 따른 강도와 염화물 저항능력간의 상관관계 평가

  • 윤용식 (한남대학교 건설시스템공학과) ;
  • 박재성 (한남대학교 건설시스템공학과) ;
  • 황철성 (가천대학교 토목환경공학과) ;
  • 권성준 (한남대학교 건설시스템 공학과)
  • Received : 2017.03.06
  • Accepted : 2017.04.26
  • Published : 2017.07.01

Abstract

Fly ash(FA) which is a byproduct in the coal combustion in thermal power plant contributes to pore structure densification due to pozzolanic reaction, and this leads to long-term strength development and excellent resistance to chloride penetration. In the work, compressive strength and chloride resistance in OPC(Ordinary Portland Cement) and FA-based concrete are evaluated, and the relationships are investigated considering ages. For the work, 3 different W/B (Water to Binder) ratios of 37%, 42%, and 47% are prepared, and 3 substitution ratio of fly ash(0%, 30%, and 50%) are considered as well. At the age of 28 days and 180 days, test results of compressive strength, diffusion coefficients based on Tang's method, and passed charges referred to ASTM C 1202 and KS F 2711 are obtained. With increasing replacement ratio of FA and decreasing W/B, the resistances to chlorides(diffusion coefficient and passed charge) are improved, and the results at the age of 180 days decrease to only 15% level at the age of 28 days due to pozzolanic reaction in FA 50 mixture, which shows that resistance to chloride is much dependent on age effect than strength development. After 180 days, more clear linear relationships are observed between strength and resistance to chloride.

화력발전의 부산물인 플라이 애쉬는 포졸란 반응을 통하여 조직구조를 개선하고 장기 강도 및 염화물 저항성에 매우 효과적이다. 본 연구에서는 28일 및 180일 재령의 보통 포틀랜트 시멘트 및 FA를 혼입한 콘크리트에 대하여 압축강도 및 염화물 저항성을 평가하였으며, 재령의 증가에 따른 상관성을 평가하였다. 이를 위해, 물-결합재비(W/B)를 37%, 42%, 47%의 3가지 수준, Fly Ash를 시멘트 중량의 0%, 30%, 50%의 3가지 수준으로 나누어 총 9가지 배합을 설정하였으며, 28일 및 180일 재령 시, 압축강도, Tang's method에 의한 촉진확산계수, 그리고 ASTM C 1202, KS F 2711을 통한 통과전하량을 측정하였다. Fly Ash 혼입율이 클수록, W/B가 낮을수록 염화물 저항성(확산계수 및 통과전하량)이 개선되었는데, 모든 FA 50 배합에서 염화물 저항성은 재령 28일 대비 재령 180일에서 약 15% 수준으로 감소하였다. 이는 FA의 포졸란 반응으로 인해 공극구조가 더 치밀해져 나타난 결과이며, 염해 저항성이 강도보다 시간에 더욱 의존적임을 알 수 있다. 재령 180일 이후, FA를 혼입한 배합에서 강도와 염해저항성의 뚜렷한 선형관계가 관측되었다.

Keywords

References

  1. Back, C. H., Tae, S. H., Roh, S. J., Lee, J. H., and Shin, S. W. (2011), A Study on the Requisite Elements of $LCCO_2$ Evaluation System at Planning Stage of Building, Korean Journal of Construction Engineering and Management, 12(3), 31-41. https://doi.org/10.6106/KJCEM.2011.12.3.31
  2. ASTM C 1202 (1993), Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, Annual Book of American Society for Testing Materials Standards.
  3. Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London. 1-15.
  4. Kim, J. M., Kwak, E. G., Cho, S. H., Kang, C. (2009), Decision of Optimized Mix Design for lightweight Foamed Concrete Using Bottom Ash by Statistical Procedure, Journal of the Korea Concrete Institute, 21(1), 3-11. https://doi.org/10.4334/JKCI.2009.21.1.003
  5. KS F 2405(2015), Standard test method for compressive strength of concrete, KSSN, 1-3.
  6. KS F 2711(2012), Testing method for resistance of concrete to chloride ion penetration by electrical conductance, KSSN, 1-18.
  7. Kwon, S. O., Bae, S. H., Lee, H. J., and Jung, S. H. (2014), Characteristics for Reinforcement Corrosion and Chloride Ion Diffusion of High Volume Fly Ash Concrete, Journal of the Korean Recycled Construction Resources Institute, 2(1), 34-39. https://doi.org/10.14190/JRCR.2014.2.1.034
  8. Lee, H. S., and Kwon, S. J. (2012), Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm, Journal of the Korea Concrete Institute, 24(4), 481-490. https://doi.org/10.4334/JKCI.2012.24.4.481
  9. Lee, S. H., Park, W. J., and Lee, H. S. (2013), Life cycle $CO_2$ Assessment Method for Concrete using $CO_2$ Balance and Suggestion to Decrease $LCCO_2$ of Concrete in South-Korean Apartment, Energy and Buildings, 58(1), 93-102. https://doi.org/10.1016/j.enbuild.2012.11.034
  10. Nath, P., and Sarker, P. (2011), Effect of Fly Ash on the Durability Properties of High Strength Concrete, The Proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, 14, 1149-1156.
  11. NORDTEST (1999), Chloride Migration Coefficient from Non-Steady-State Migration Experiments, NT BUILD 492, 1-11.
  12. Park, K. C., and Lim, N. G.(2015), Chloride Penetration of Concrete Mixed with High Volume Fly Ash and Blast Furnace Slag, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(1), 90-99. https://doi.org/10.11112/jksmi.2015.19.1.090
  13. Park, S. S. (2017), Corrosion-Resisting Performance Evaluation of Concrete Mixed with Fly-Ash, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(1), 117-125.
  14. RILEM (1994), Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, London, 28-52.
  15. Song H. W., Pack, S. W., Lee, C. H., and Kwon, S. J. (2006), Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration, Journal of Restoration of Building and Monument, 12(4), 265-284.
  16. Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K. (2005), A Study on Analytical Technique of Chloride Diffusion Considering Characteristics of Mixture Design for High Performance Concrete using Mineral Admixture, Journal of the Korean Society of Civil Engineers, 25(1A), 213-223.
  17. Tang, L. (1996a), Chloride Transport in Concrete - Measurement and Prediction, Publication, Chalmers University of Technology, Sweden, 26-85.
  18. Tang, L.(1996b), Electrically Accelerated Methods for Determining Chloride Diffusivity in Concrete-Current Development, Magazine of Concrete Research, 48(176), 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  19. Yoo, S. W., Koh, K. T., Kwon, S. J., and Park, S. G.(2013), Analysis Technique for Flexural Behavior in RC Beam Considering Autogenous Shrinkage Effect, Construction and Building Materials, 47, 560-568. https://doi.org/10.1016/j.conbuildmat.2013.05.061
  20. Yoo, S. W., Kwon, S. J., and Jung, S. H. (2012), Analysis Technique for Autogenous Shrinkage in High Performance Concrete with Mineral and Chemical Admixtures, Construction and Building Materials, 34, 1-10. https://doi.org/10.1016/j.conbuildmat.2012.02.005