DOI QR코드

DOI QR Code

Mobile Edge Computing based Charging Infrastructure considering Electric Vehicle Charging Efficiency

전기자동차 충전 효율성을 고려한 모바일 에지 컴퓨팅 기반 충전 인프라 구조

  • Lee, Juyong (Dept. of Electronic Information System Engineering, Sangmyung University) ;
  • Lee, Jihoon (Dept. of Information and Telecommunication Engineering, Sangmyung University)
  • 이주용 (상명대학교 전자정보시스템공학과) ;
  • 이지훈 (상명대학교 정보통신공학과)
  • Received : 2017.09.18
  • Accepted : 2017.10.13
  • Published : 2017.10.31

Abstract

Due to the depletion of fossil fuels and the increase in environmental pollution, electric vehicles are attracting attention as next-generation transportation and are becoming popular all over the world. As the interest in electric vehicles and the penetration rate increase, studies on the charging infrastructure with vehicle-to-grid (V2G) technology and information technology are actively under way. In particular, communication with the grid network is the most important factor for stable charging and load management of electric vehicles. However, with the existing centralized infrastructure, there are problems when control-message requests increase and the charging infrastructure cannot efficiently operate due to slow response speed. In this paper, we propose a new charging infrastructure using mobile edge computing (MEC) that mitigates congestion and provides low latency by applying distributed cloud computing technology to wireless base stations. Through a performance evaluation, we confirm that the proposed charging infrastructure (with low latency) can cope with peak conditions more efficiently than the existing charging infrastructure.

화석 연료의 고갈 및 환경오염의 증가로 인하여 전기 에너지를 사용하는 전기 자동차가 차세대 교통수단으로 주목받고 있으며 전 세계적으로 인기를 끌고 있다. 전기 자동차의 보급률 및 관심이 높아짐에 따라 V2G (Vehicle to Grid) 및 IT 기술을 이용한 충전 인프라에 대한 연구가 활발히 진행되고 있다. 특히, 전기 자동차의 안정적인 충전 및 부하 관리를 위하여 그리드 네트워크와의 통신은 가장 중요한 요소이다. 그러나 기존의 중앙 집중형 인프라 구조의 경우 제어 메시지 요청이 증가할 경우 느린 응답속도로 인하여 충전 인프라가 효율적으로 작동하지 못하는 문제점들이 존재한다. 본 논문에서는 분산형 클라우드 컴퓨팅 기술을 무선 기지국에 적용하여 충전 인프라에 혼잡을 줄이고 지연시간을 줄이기 위해 MEC (Mobile Edge Computing)를 활용한 새로운 전기자동차 충전 인프라 구조를 제안한다. 성능 평가를 통해 본 논문에서 제안한 저 지연시간을 가지는 충전 인프라가 기존에 존재하는 충전 인프라보다 효율적으로 전력 피크 상황에 대처함을 확인하였다.

Keywords

References

  1. W. Kempton, S. E. Letendre, "Electric vehicles as a new power source for electric utilities", Transportation Research Part D: Transport and Environment, vol. 2, no. 3, pp. 157-175, 1997. DOI: https://doi.org/10.1016/S1361-9209(97)00001-1
  2. E. Ali, Y. Lee, K. Rajashekara, "Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles", IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2237-2245, 2008. DOI: https://doi.org/10.1109/TIE.2008.922768
  3. J. Lee, J. Lee, J. Choi, K. Chang, C. Park, "Enhanced Power Delivery Architecture for Electric Vehicles", Advanced Science and Technology Letters: Networking and Communication, vol. 66, no. 6, pp. 20-23, 2014. DOI: https://doi.org/10.14257/astl.2014.66.06
  4. C. Kristien, E. Haesen, J. Driesen, "The impact of charging plug-in hybrid electric vehicles on a residential distribution grid", IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 371-380, 2010. DOI: https://doi.org/10.1109/TPWRS.2009.2036481
  5. J. Lee, J. Lee, Y. Choi, K. Chang, "Efficient Electric Vehicle Charging System for Enhanced Power Delivery", International Journal of Applied Engineering Research, vol. 9, no. 24, pp. 29883-29890, 2014.
  6. K. Chau, Y. Wong, "Overview of power management in hybrid electric vehicles", Energy conversion and management, vol. 43, no. 15, pp. 1953-1968, 2002. DOI: https://doi.org/10.1016/S0196-8904(01)00148-0
  7. M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, "Mobile-edge computing introductory technical white paper," Mobile-edge Computing (MEC) industry initiative, 2015.
  8. T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, H. Flinck, "Mobile edge computing potential in making cities smarter," IEEE Communications Magazine, vol. 55, no. 3, pp. 38-43, 2017. DOI: https://doi.org/10.1109/MCOM.2017.1600249CM
  9. A. V. Dastjerdi, R. Buyya, "Fog computing: Helping the Internet of Things realize its potential", Computer, vol. 49, no. 8, pp. 112-116, 2016. DOI: https://doi.org/10.1109/MC.2016.245
  10. T. X. Tran, A. Hajisami, P. Pandey, D. Pompili, "Collaborative Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios, and Challenges," IEEE Communications Magazine, vol. 55, no. 4, pp. 54-61, 2017. DOI: https://doi.org/10.1109/MCOM.2017.1600863
  11. A. A. Eajal, M. F. Shaaban, E. F. El-Saadany, K. Ponnambalam, "Fuzzy logic-based charging strategy for Electric Vehicles plugged into a smart grid," International Journal of Process Systems Engineering, vol. 4, pp. 119-137.
  12. H, Zhang, Z. Hu, Z. Xu, Y. Song, "Evaluation of achievable vehicle-to-grid capacity using aggregate pev model," IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 784-794, 2017. DOI: https://doi.org/10.1109/TPWRS.2016.2561296