DOI QR코드

DOI QR Code

Effective Demosaicking Algorithm for CFA Images using Directional Interpolation and Nonlocal Means Filtering

방향성 기반 보간법과 비지역 평균 필터링에 의한 효과적인 CFA 영상 디모자이킹 알고리즘

  • Kim, Jongho (Department of Multimedia Engineering, Sunchon National University)
  • 김종호 (순천대학교 멀티미디어공학과)
  • Received : 2017.07.27
  • Accepted : 2017.10.13
  • Published : 2017.10.31

Abstract

This paper presents an effective demosaicking algorithm for color filter array (CFA) images acquired from single-sensor devices based on directional interpolation and nonlocal properties of the image. We interpolate the G channel considering diagonal directions as well as horizontal and vertical directions, using a small number of pixels to reflect local properties of the image. Then, we overcome image degradations, such as zipper effects near edges and false colors, by applying nonlocal means (NLM) filtering to the interpolated pixels. R and B channels are reproduced by using directional interpolation with information of the reconstructed G channel and NLM filtering. Experimental results for various McMaster images with high saturation and color changes show that the proposed algorithm accomplishes high PSNR compared with conventional methods. Moreover, the proposed method demonstrates better subjective quality compared with existing methods in terms of reduction of quality degradation, like false colors, and preservation of the image structures, such as edges and textures.

본 논문에서는 단일 센서 기기를 통해 획득된 CFA (color filter array) 영상의 효과적인 디모자이킹(demosaicking)을 위하여 방향성 기반 보간법과 영상의 비지역 특성을 이용하는 방법을 제안한다. G 채널을 복원하기 위하여 수직 및 수평방향 뿐만 아니라 대각선 방향을 고려하고, 영상의 지역적 특성을 위하여 비교적 적은 수의 픽셀을 이용하여 보간한다. 이후, 영상의 비지역적 특성을 반영하여 에지 근처에서의 복원능력 및 색상오류 등에 의한 화질열화를 개선하기 위하여 보간된 픽셀에 NLM (nonlocal means) 필터링을 적용한다. R과 B 채널은 이미 복원된 G 채널의 정보를 이용하여 방향성 기반 보간법 및 NLM 필터링을 적용하여 복원한다. 채도가 높고 색상변화가 비교적 큰 McMaster 영상에 대해서 수행한 실험결과는 제안하는 디모자이킹 방법이 기존의 방법에 비해 PSNR 기반의 객관적 성능평가 결과가 우수하고, 주관적 화질 측면에서 에지 및 텍스처와 같은 영상의 구조를 잘 보존하고 색상오류 등과 같은 왜곡현상을 감소시켜 우수한 성능을 나타냄을 알 수 있다.

Keywords

References

  1. B. E. Bayer, "Color imaging array," U. S. Patent No. 3971065, 1975.
  2. J. E. Adams, "Intersections between color plane interpolation and other image processing functions in electronic photography," in Proc. SPIE, vol. 2416, pp. 144-151, Mar. 1995. DOI: https://doi.org/10.1117/12.204825
  3. J. E. Adams, J. F. Hamilton Jr., "Adaptive color plane interpolation in single color electronic camera," U. S. Patent No. 5506619, 1996.
  4. B. K. Gunturk, Y. Altunbasak, R. M. Mersereau, "Color plane interpolation using alternating projections," IEEE Trans. Image Process., vol. 11, no. 9, pp. 997-1013, Sep. 2002. DOI: https://doi.org/10.1109/TIP.2002.801121
  5. R. Lukac, K. Martin, K. N. Plataniotis, "Demosaicked image postprocessing using local color ratios," IEEE Trans. Circuits and Syst. Video Technol., vol. 14, no. 6, pp. 914-920, Jun. 2004. DOI: https://doi.org/10.1109/TCSVT.2004.828316
  6. X. Li, "Demosaicing by successive approximation," IEEE Trans. Image Process., vol. 14, no. 3, pp. 370-379, Mar. 2005. DOI: https://doi.org/10.1109/TIP.2004.840683
  7. K. Hirakawa, T. W. Parks, "Adaptive homogeneity-directed demosaicing algorithm," IEEE Trans. Image Process., vol. 14, no. 3, pp. 360-369, Mar. 2005. DOI: https://doi.org/10.1109/TIP.2004.838691
  8. L Zhang, X. Wu, "Color demosaicking via directional linear minimum mean square-error estimation," IEEE Trans. Image Process., vol. 14, no. 12, pp. 2167-2178, Dec. 2005. DOI: https://doi.org/10.1109/TIP.2005.857260
  9. D. Menon, S. Andriani, G. Calvagno, "Demosaicing with directional filtering and a posteriori decision," IEEE Trans. Image Process., vol. 16, no. 1, pp. 132-141, Jan. 2007. DOI: https://doi.org/10.1109/TIP.2006.884928
  10. X. Li, B. Gunturk, L. Zhang, "Image demosaicking: a systematic survey," in Proc. SPIE, vol. 6822 (VCIP2008), San Jose, CA. pp. 68221J-1-68221J-15, 2008.
  11. A. Buades, B. Coll, J. -M. Morel, C. Sbert, "Self-similarity driven color demosaicking," IEEE Trans. Image Process., vol. 18, no. 6, pp. 1192-1202, Jun. 2009. DOI: https://doi.org/10.1109/TIP.2009.2017171
  12. F. Zhang, X. Wu, X. Yang, W. Zhang, L. Zhang, "Robust color demosaicking with adaptation to varying spectral correlations," IEEE Trans. Image Process., vol. 18, no. 12, pp. 2706-2717, Dec. 2009. DOI: https://doi.org/10.1109/TIP.2009.2029987
  13. J. Mairal, M. Elad, G. Sapiro, "Sparse representation for color image restoration," IEEE Trans. Image Process., vol. 17, no. 1, pp. 53-69, Jan. 2009. DOI: https://doi.org/10.1109/TIP.2007.911828
  14. L. Zhang, X. Wu, A. Buades, X. Li, "Color demosaicking by local directional interpolation and nonlocal adaptive thresholding," J. Electronic Imaging, vol. 20, no. 2, pp. 023016-1-023016-16, 2011. DOI: https://doi.org/10.1117/1.3600632
  15. Y. -K. Lee, H. Yoo, "Demosaicking method using high-order interpolation with parameters," The Trnas. KIEE, vol. 62, no. 9, pp. 1276-1282, Sep. 2013.
  16. A. Buades, B. Coll, J. M. Morel, "A review of image denoising algorithms, with a new one," Multiscale Model. Simul., vol. 4, no. 2, pp. 490-530, 2005. DOI: https://doi.org/10.1137/040616024
  17. S. Kindermann, S. Osher, P. W. Jones, "Deblurring and denoising of images by nonlocal functions," Multiscale Model. Simul., vol. 4, no. 4, pp. 1091-1115, 2005. DOI: https://doi.org/10.1137/050622249
  18. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, "Image denoising by sparse 3-D transform domain collaborative filtering," IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2094, Aug. 2007. DOI: https://doi.org/10.1109/TIP.2007.901238
  19. T. Brox, O. Kleinschmidt, D. Cremers, "Efficient nonlocal means for denoising of textural patterns," IEEE Trans. Image Process., vol. 17, no. 7, pp. 1083-1092, Jul. 2008. DOI: https://doi.org/10.1109/TIP.2008.924281
  20. A. Buades, B. Coll, J. M. Morel, "Nonlocal image and movie denoising," Int. J. Comput. Vision, vol. 76, no. 2, pp. 123-139, 2008. DOI: https://doi.org/10.1007/s11263-007-0052-1