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요  약

많은 사용자가 함께 즐기는 온라인 게임(MMOGs)에서 IoT의 확장은 서버에 엄청난 부하를 지

속적으로 증가시켜, 모든 데이터들이 Big-Data화 되어가는 환경에 있다. 이에 본 논문에서는 딥러

닝 기법 중에서 가장 많이 사용되는 Sparse Autoencoder와 이미 잘 알려진 부하분산 알고리즘

(ProGReGA-KF)을 결합한다. 기존 알고리즘 ProGReGA-KF과 본 논문에서 제안한 알고리즘을 

이동 안정성으로 비교하였고, 제안한 알고리즘이 빅-데이터 환경에서 좀 더 안정적이고 확장성이 있

음 시뮬레이션을 통해 보였다.  

ABSTRACT

In recent years, expansions and advances of the Internet of Things (IoTs) in a 

distributed MMOGs (massively multiplayer online games) architecture have resulted in 

massive growth of data in terms of server workloads. We propose a combing Sparse 

Autoencoder and one of platforms in MMOGs, ProGReGA. In the process of Sparse 

Autoencoder, data representation with respect to enhancing the feature is excluded from 

this set of data. In the process of load balance, the graceful degradation of ProGReGA 

can exploit the most relevant and less redundant feature of the data representation. We 

find out that the proposed algorithm have become more stable. 
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1. Introduction 

In the distributed architecture of massively 

multiplayer online games (MMOGs) in IoTs 

[1], there have been main existing issues such 

as managing thousands of participants 

simultaneously and providing guarantees 

consistency and resistance for intermediate 

communications on the support network. 

Interactions between the huge numbers of 

players might be generated and growing 

considerably compared to the number of 

players, which is mainly responsible for 

engendering a Big-Data world. There have 

been many proposals for considering the 

available information brought into the 

distributed servers. Obviously, the main issues 

of those proposals how can we exploit the 

historically information. That means MMOGs 

in the Big-Data[2] world require a new 

criterion for load balancing because the 

accumulated huge amount of information might 

be useful if the information can be represented 

into enhancing the most relevant and less 

redundant form. Based on the data 

representation by learning model[10], such as 

Sparse Autoencoder[6], the freer move of the 

players’ avatars in the game world, the more 

possible the formation of severs’ reactions to 

try to reduce making errors such as hotspots 

[7], around which the players are more 

concentrated than in other regions of the 

world, causing one of main reasons to be 

degraded. In the learning model, if severs get 

communizing each other in a manageable size 

of a group of avatars, then they can learn 

each other by interactions and occurring 

information between them can be huge brought 

into Big-Data world. We consider the ongoing 

issue, how we can make the demonstration of 

the server managing powers by the 

accumulated information. For that reason, the 

server-based software has the ability of 

analyzing the patterns of communications 

between players by preprocess and adapting 

the considered features to service balance. 

There have been the previous load balancing 

schemes in MMOGs for preventing the 

presence of hotspots from degrading the 

quality of the game world and considering the 

reduction of the inter-server communication 

overhead. However, there are little works on 

that featured information issues. Therefore, our 

work is beyond the qualification of the 

tolerable load balancing because the details of 

loads and the players’ demands in game world 

are given rise to the Big-Data, making 

enriched meaningful features.

The purpose of our work is to learn the 

patterns of loads by these avatar world based 

on the information obtained from the past 

loads accumulated. In the virtual world, 

learning the overhead patterns in advance can 

benefit load balancing, prevent degradation of 

quality of the game and enable the severs to 

take prompt actions. In this paper, the past 

loads provided by our developed game 

simulation has been used as our experimental 

dataset. Our studied past loads have the 

following properties: the number of cells per 

region, which assigned to a different server, 

and how many cells it is linked with. To 

exploit these properties, we proposed a novel 

approach in terms of featured information. In 

our approach, we combine a Sparse 

Autoencoder[6] as our data reconstruction to 
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achieve a better representation of the inputs 

and a well-known greedy graph partition 

growing algorithm, ProGReGA[7]. The Sparsity 

Autoencoder[6] can makes the most relevant 

and less redundant of input data. So, the 

preprocessed feature layer by the Sparse 

Autoencoder[6] can further capture the most 

relevant features from the past loads. The 

proposed our algorithm is compared with the 

representation-free version of ProGReGA-KF 

[7] on the own simulation. It finds out that 

our proposed algorithm has become more 

stable and scalable than the representation-free 

ProGReGA-KF[7] with the less number of 

reducing player migrations between servers. 

The rest of the paper is organized as follows. 

The related work is presented in Section 2. 

Section 3 describes the details of our proposed 

algorithm. Section 4 gives the experimental 

results and comparison. Finally, we conclude 

our work in Section 5.

2. Related Works

The Internet of Things (IoT)[1] is rapidly 

gaining ground in the field of modern wireless 

telecommunications. The basic foundation of 

the IoT is the pervasive presence around us of 

a variety of things or objects—such as 

radio-frequency identification (RFID) tags[5], 

sensors, actuators, mobile phones—which, 

through unique addressing schemes, are able 

to interact with each other and cooperate with 

their neighbors to reach common goals. In[8], 

the authors combine the Phase Space 

Reconstruction (PSR) and Group Method of 

Data Handling method based on Evolutionary 

Algorithm (EA-GMDH) for host load 

prediction. The prediction performance of this 

method is closely related to the parameters 

they chose, as the evolutionary algorithm is a 

stochastic global search method which may fall 

into local optima. ESN is a rather recent 

development in the field of RNN[8] and it lead 

to a fast, simple and constructive algorithm for 

supervised training of RNN. The basic idea of 

ESN is to use a large reservoir RNN as a 

supplier of interesting dynamics from which 

the desired output is combined. The philosophy 

adopted in Reservoir Computing is to consider 

the recurrent layer as a large reservoir of 

nonlinear transformations of the input data and 

decouple the learning of parameters inside and 

outside the reservoir.

Unsupervised feature learning[11] refers to a 

class of machine learning techniques[12], 

developed rapidly since 2006, where many 

stages of nonlinear information processing in 

hierarchical architectures are exploited for 

pattern classification. Recently, unsupervised 

feature learning technologies have been 

successfully used in many research areas, such 

as handwritten digit images recognition[3], 

visual object classification[3] and nature 

language process[3]. After initializing the deep 

neural network with unsupervised feature 

learning algorithms [e.g., autoencoder[6], matrix 

factorization and restricted Boltzmann machines 

(RBM)[4]], the weights are starting at a better 

location in parameter space than if they had 

been randomly initialized. Because the deep 

neural network can also be considered to 

perform feature learning, since they learn a 

representation of their input at the hidden 

layers which is subsequently used for 
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classification or regression at the output layer. 

One of load balancing schemes for distributed 

MMOG servers, taking into account the use of 

upload bandwidth of the server nodes[13]. The 

scheme[7], which is divided into three phases, 

proposed different algorithms for phase 2 (the 

balancing phase), and ProGReGA[7] presented 

the lowest overhead of all, while 

ProGReGA-KF[7] presented the second fewest 

migrations of players between servers, along 

with the second lower overhead introduced and 

a fair load distribution.

3. The proposed Algorithm

3.1 Sparse Autoencoder

[Fig. 1] Sparse Autoencoder

There are unlabeled training examples set 

{x(1),x(2),x(3),...},where x(i)∊Rn. An autoencoder 

neural network is an unsupervised learning 

algorithm that applies backpropagation, setting 

the target values to be equal to the inputs .i.e., 

it uses y(i)=x(i). It is trying to learn an 

approximation to the identityfunction, hW,b(x)  

≈ x, so that the output y
(i) is similar to x(i). 

By applying constraints on  the network, such 

as by limiting the number of hidden units or 

the average activation of the hidden units, we 

can discover high-level features of the input 

data. The features learned automatically can 

improve the accuracy of the classification and 

regression tasks comparing with the features 

designed manually. There are arguments about 

the number of hidden units being small or 

large (perhaps even greater than the number 

of input pixels). In particular, there is a 

sparsity constraint on the hidden units, then 

the autoencoder will still discover interesting 

structure in the data, even if the number of 

hidden units is large.  For the overall cost 

function, Equation 5, there are Equation 1 and 

Equation 2 for the sparsity parameter, . In 

Equation 1, aj
(2)(x) denotes the activation of 

this hidden unit j in the autoencoder when the 

network is given a specific input x. In 

Equation 2, there is the constraint, where  is 

a sparsity parameter, typically a small value 

close to zero (say  = 0.05). In Equation 3, 

there is an added extra penalty term to the 

objective that penalizes j deviating 

significantly from , where s2 is the number of 

neurons in the hidden layer, and the index j is 

summing over the hidden units. This penalty 

term is based on the Kullback-Leibler(KL)[6] 

divergence in Equation 4. The 

Kullback-Leibler(KL)[6] divergence betweena 

Bernoulli random variable with mean  and a 

Bernoulli random variable with mean j. In 

Equation 5, there is overall cost function, 
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where  controls the weight of the sparsity 

penalty term and j depends on W, b, and the 

activation of a hidden unit, j depends on the 

parameters W, b.

j = 







  



 [a
(2)

j(x
(i)
)]  ------------------  Equation 1

j =  -------------------------------------- Equation 2


 



 log(/j)+ (1-) log((1-)/(1-j)) - Equation 3


 



 KL(||j)------------------------------- Equation 4

Jsparse(W,b) = J(W,b)+-
 



 KL(||j) ---- Equation 5

Algorithm: Local regions selection
1. local_group <-{R}  #R is Region
2. local_weight <-wr(R)  #Regions’ weight
3. local_capacity<-p(s(R))  #Power of Server of Region
4. average_usage<-local_weight/local_capacity 
5. while average_usage > max(1, Utotal)do 

              # Utotal s SystemUsage
6.     if there is any not selected region neighbor to one 
of local_group then
7.        R<- not selected region neighbor to one of 
local_group, with smallest
8.          u(s(R))       #Region’s resource usage
9.     else if there is any empty region then
10.         R<- empty region with highest p(s(R))
11.    else
12.         stop when no more regions to select
13.    end if
14.    local_weight<-local_weight+wr(R)#Regions’weight
15.    local_capacity<-p(s(R))  #Power of Server of Region
16.    average_usage<-local_weight/local_capacity 
17.    local_group <- local_group  {R}   
18. end while                
19. Running the local balancing algorithm with local_group 
as input 

[Fig. 2] Local Regions Selection

3.2 ProGReGA

In the previous well-known load balance on 

MMOGs, there are three phases, where firstly, 

selecting the group of local regions, secondly, 

balancing these regions, assigning to each one 

a weight which is proportional to the power of 

its server, and lastly, refining the partitioning, 

reducing the overhead. In Fig. 2, there is a 

phase of selecting local regions. In Fig. 3, 

there is a load balancing algorithm, ProGReGA 

[7] based on greedy region growing method to 

allocate the heaviest cells to the regions 

managed by the most powerful servers. 

However, the input of the algorithm receives a 

list of the regions without data representation. 

So, it is not achievable and scalable in terms 

of Big-Data[2]. 

Algorithm: ProGReGA 
1. weight_to_divide <-0
2. free_capacity <-0
3. for each region R in Region_List do
4.     weight_to_divide <- weight_to_divide + wr(R)
5.     free_capacity <- free_capacity + p(s(R))
6.     Free all cells from R temporarily
7. end for
8. Sort Region_List in decreasing order of p(s(R))
9. for each region R in Region_List do
10.      weight_share <-weight_to_divide × 
p(s(R))/free_capacity
11.      while wr(R)<weight_sharedo 
12.            if there is any cell from R neighboring a free 
cell then
13.             R <- R  {neighbor free cell with the 
highest Intc(AC)}
14.           else if there is any free cell then
15.                 R <- R  {the heaviest free cell}
16.           else
17.                 Stop no more free cells
18.           end if
19.      end while
20. end for

[Fig. 3] ProGreGA Algorithm

3.3 ProGReGA-KF

Algorithm: ProGReGA-KF 
1. weight_to_divide <-0
2. free_capacity <-0
3. for each region R in Region_List do
4.     weight_to_divide <- weight_to_divide + wr(R)
5.     free_capacity <- free_capacity + p(s(R))
6.     cell_list <- list of cells from R in increasing order of weight
7.     while fracr(R) > fracp(s(R)) do
8.          C<-first element from cell_list
9.          Remove C from R
10.         Remove C from cell_list
11.   end while
12. end for
13. Sort Region_List in increasing order of u(s(R))
14. for each region R in Region_List do
15.      weight_share <-weight_to_divide × p(s(R))/free_capacity
16.      while wr(R)<weight_sharedo 
17.           if there is any cell from R neighboring a free cell then
18.                  R <- R  {neighbor free cell with the highest 
Intc(AC)}
19.           else if there is any free cell then
20.                 R <- R  {the heaviest free cell}
21.           else
22.                 Stop no more free cells
23.           end if
24.      end while
25. end for

[Fig. 4] ProGReGA-KF Algorithm

In this section there is another load 
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balancing algorithm, ProGReGA-KF[7] based 

on greedy region growing method like 

ProGReGA[7]. In this algorithm, each region 

will gradually release its cells in increasing 

order of weight, until its weight fraction is 

less than or equal to the power fraction of its 

server. Therefore the heaviest cells remain on 

the same server and most players do not need 

to migrate. Moreover, there is an advantage 

that the possibility of fragmenting the regions, 

with many isolated cells, increasing the 

overhead could be mitigated by the weight 

fraction of the region, fracr(R). 

3.4 The proposed Algorithm

Algorithm: ProGReGA with Sparse Autoencoder
Input: Each_Cell in all regions, C = {1, 2, … n}, 
Output: Region_List based on Data Reduction
1. E=Encoded(Input, activation=’relu’)
2. D=Decoded(E, activation=’sigmoid’)
3. AC=Autoencoder(Input, D)
4. weight_to_divide <-0
5. free_capacity <-0
6. for each region R in Region_List do
7.     weight_to_divide <- weight_to_divide + wr(R)
8.     free_capacity <- free_capacity + p(s(R))
9.     Free all cells from R temporarily
10. end for
11. Sort Region_List in decreasing order of p(s(R))
12. for each region R in Region_List do
13.      weight_share <-weight_to_divide × p(s(R))/free_capacity
14.      while wr(R)<weight_sharedo 
15.           if there is any cell from R neighboring a free cell then
16.                  R <- R  {neighbor free cell with the highest 
Intc(AC)}
17.           else if there is any free cell then
18.                 R <- R  {the heaviest free cell}
19.           else
20.                 Stop no more free cells
21.           end if
22.      end while
23. end for

[Fig. 5] The proposed Algorithm

In this section, we explain our proposed 

model in details. Likewise the proposed scheme 

ProGReGA-KF[7], players who are interacting 

with each other should be connected to the 

same server. If two avatars of two different 

players might be distant from each other, both 

could be interacting with a third avatar 

between them. So, it is necessary to consider 

how many pairs of players and which of them 

will be divided into different server. Our 

approach is to exploit data representation by 

Sparse Autoencoder[6]. The overhead patterns 

obtained from the past loads can be a criterion 

of load balancing. In our approach, likewise 

ProGReGA-KF[7], the main aspect in our 

solution is focusing each server’s local 

information that initiated the balancing process 

and its neighbors and accumulated information 

on each sever. In this regards, we attempt to 

map original data space to a new space which 

is more suitable for maximizing the relevant 

features as a good feature representation. The 

Sparse Autoencoder learning algorithm[6], 

which is one approach to automatically learn 

features from unlabeled data. After the 

preprocessed feature layer by the Sparse 

Autoencoder[6], the proposed algorithm has the 

simple phases like ProGReGA[7] for balancing 

these regions and partitioning for the overhead 

reduction.

4. Performance Evaluation

In our work, our proposed algorithm, 

combining Sparse Autoencoder[6] and 

ProGReGA[7] is compared with the 

well-known research ProGReGA-KF[7]. For 

the evaluations, we consider a heterogeneous 

system, simulate our algorithm on a grid-like 

square cells, select a cell with the lowest 

interaction in the smallest cell cluster by the 

overloaded sever and transfer the loads of the 

selected server to the least loaded one. 

However, the previous one, ProGReGA-KF[7] 

have been forcing an uneven distribution of 

avatars in the virtual environment, putting to 

test the load balancing algorithms. The 
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purpose of the previous research, 

ProGReGA-KF[7] was how to take account of 

hotspots form the regions and reduce the 

distribution overhead. On the other way round, 

in a normal game world, “graceful 

degradation” is more realistic[7]. Therefore, in 

our performance evaluation, we consider the 

normal real game world. As our simulation 

based on Unity3D[9] begins, they start to 

move according to the random model[7]. The 

environment of the simulation is consisted of a 

two-dimensional space, divided by cells, which 

is belonged to some region. It can be 

transferred to another region for load 

balancing. We can take into consideration in 

the average weight of a region on the criterion 

of proportional balance and the number of 

migrations by the defined formulae in Chapter 

3. Also, we can calculate how many time 

differences for preprocess between our 

proposed algorithm, combining Sparse 

Autoencoder[6] and ProGReGA[7] and the 

previous one ProGReGA-KF[7] in terms of Big 

Data.

[Fig. 6(b)] The comparison our proposed 

algorithm (AE+ProGreGA) with the well-known 

Algorithm (ProGReGA-KF) 

[Fig. 6(a)] The comparison our proposed 

algorithm (AE+ProGreGA) with the well-known 

Algorithm (ProGReGA-KF)

[Fig. 6] shows the one of important results 

that our proposed algorithm has some 

advantages with respect to preprocess of 

Big-Data. With the reasonable size of data, 

load balance can be possible to handle during 

the game session. When it comes to Big-Data, 

preprocess become increasingly important. If 

the output of preprocess are given in a 

reasonable time to the load balance 

management, still having information 

meaningful, then load balance itself is 

considerably of serve to players during game 

session without letting the players know. 

According to the load balance depends on the 

specific games such as real-time games in 

which users constantly migrate between 

servers, causing delay and hinder of the 

interaction between players, our proposed 

algorithm can be considered more stable and 

achievable. Our proposed preprocess can handle 

the information from Big-Data by simplifying 

and managing in the proportion to the size of 

accumulated data. 
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We notice that it is considerably scalable 

than the previous version ProGREGA-KF[7] in 

terms of data representation of Sparse 

Autoencoder[6]. Specifically, in comparing Fig. 

6(a) and Fig. 6(b), we can see that in terms 

of no migrations, our proposed algorithm is 

much more realistic. The reason for that is 

that our load balancing part of the proposed 

algorithm follows the development of 

ProGReGA. In the performance evaluation in 

[7], ProGReGA was mentioned that it has the 

lowest overhead as it was designed precisely 

to create the most realistic regions, causing 

the number of migrations manageable.

5. Conclusion

We have suggested the algorithm combining 

Sparse Autoencoder[6], one of the most used 

data representation, and ProGREGA[7], the 

most well-known load balancing scheme for 

distributed MMOG servers. Information 

obtained from the past loads of servers based 

on the demands of players are getting formed 

down into Big-Data. Our proposed algorithm 

tries to overcome consuming a huge amount of 

preprocessing time in terms of Big-Data. 

According to learning the loads patterns in 

advance can benefit load balancing, our 

proposed algorithm can exploit these properties 

by data representation of Sparse Autoencoder 

[6]. The proposed our algorithm is compared 

with the representation-free version of 

ProGReGA-KF[7]. Our proposed preprocess 

can handle the information from Big-Data by 

simplifying and managing in the proportion to 

the size of accumulated past data. Because 

preprocess is given in a reasonable time to the 

load balance management, load balance as the 

reaction of servers is considerably of serve to 

players during game session without letting 

the players know. Therefore, our proposed 

algorithm have become more scalable than the 

representation-free ProGReGA-KF[7] in terms 

of Big-Data[2]. Specifically, if it is designed 

precisely to create the most realistic regions, 

causing the number of migrations manageable, 

our proposed algorithm can be considered more 

stable and achievable.
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