
Journal of Korea Game Society JKGS ❙103

게임 프로그래밍

Journal of Korea Game Society 2017 Oct; 17(5): 103-112

http://dx.doi.org/10.7583/JKGS.2017.17.5.103

Sparse Autoencoder의 데이터 특징 추출과

ProGReGA-KF를 결합한 새로운 부하 분산 알고리즘 ※

김차영
*

, 박정민
**

, 김혜영
**

경기대학교 컴퓨터과학과
*

, 홍익대학교 게임학부
**

kimcha0@kgu.ac.kr, bjmbam12@naver.com, hykim@hongik.ac.kr

Combing data representation by Sparse Autoencoder and the well-known

load balancing algorithm, ProGReGA-KF

Chayoung Kim
*

, Jung-min Park
**

, Hye-young Kim
**

Dept. of Computer Science, Kyonggi University
*

, School of Games, Hongik Unversity
**

요 약

많은 사용자가 함께 즐기는 온라인 게임(MMOGs)에서 IoT의 확장은 서버에 엄청난 부하를 지

속적으로 증가시켜, 모든 데이터들이 Big-Data화 되어가는 환경에 있다. 이에 본 논문에서는 딥러

닝 기법 중에서 가장 많이 사용되는 Sparse Autoencoder와 이미 잘 알려진 부하분산 알고리즘

(ProGReGA-KF)을 결합한다. 기존 알고리즘 ProGReGA-KF과 본 논문에서 제안한 알고리즘을

이동 안정성으로 비교하였고, 제안한 알고리즘이 빅-데이터 환경에서 좀 더 안정적이고 확장성이 있

음 시뮬레이션을 통해 보였다.

ABSTRACT

In recent years, expansions and advances of the Internet of Things (IoTs) in a

distributed MMOGs (massively multiplayer online games) architecture have resulted in

massive growth of data in terms of server workloads. We propose a combing Sparse

Autoencoder and one of platforms in MMOGs, ProGReGA. In the process of Sparse

Autoencoder, data representation with respect to enhancing the feature is excluded from

this set of data. In the process of load balance, the graceful degradation of ProGReGA

can exploit the most relevant and less redundant feature of the data representation. We

find out that the proposed algorithm have become more stable.

Keywords : Sparse Autoencoder, massively multiplayer online games (MMOGs), load

balance, Deep Learning, data representation(딥러닝, 부하분산, Sparse Autoencoder, MMOGs,

데이터 특징 추출)

Received: Sep. 11. 2017 Revised: Oct. 18.; 2017

Accepted: Oct. 20. 2017

Corresponding Author: Hye-young Kim(Hongik University)

E-mail: hykim@hongik.ac.kr

ISSN: 1598-4540 / eISSN: 2287-8211

Ⓒ The Korea Game Society. All rights reserved. This is an

open-access article distributed under the terms of the Creative

Commons Attribution Non-Commercial License

(http://creativecommons.otg/licenses/by-nc/3.0), which permits

unrestricted non-commercial use, distribution, and reproduction in

any medium, provided the original work is properly cited.

104 ❙ Journal of Korea Game Society 2017 Oct; 17(5): 103-112

― Sparse Autoencoder의 데이터 특징 추출과 ProGReGA-KF를 결합한 새로운 부하 분산 알고리즘 ―

1. Introduction

In the distributed architecture of massively

multiplayer online games (MMOGs) in IoTs

[1], there have been main existing issues such

as managing thousands of participants

simultaneously and providing guarantees

consistency and resistance for intermediate

communications on the support network.

Interactions between the huge numbers of

players might be generated and growing

considerably compared to the number of

players, which is mainly responsible for

engendering a Big-Data world. There have

been many proposals for considering the

available information brought into the

distributed servers. Obviously, the main issues

of those proposals how can we exploit the

historically information. That means MMOGs

in the Big-Data[2] world require a new

criterion for load balancing because the

accumulated huge amount of information might

be useful if the information can be represented

into enhancing the most relevant and less

redundant form. Based on the data

representation by learning model[10], such as

Sparse Autoencoder[6], the freer move of the

players’ avatars in the game world, the more

possible the formation of severs’ reactions to

try to reduce making errors such as hotspots

[7], around which the players are more

concentrated than in other regions of the

world, causing one of main reasons to be

degraded. In the learning model, if severs get

communizing each other in a manageable size

of a group of avatars, then they can learn

each other by interactions and occurring

information between them can be huge brought

into Big-Data world. We consider the ongoing

issue, how we can make the demonstration of

the server managing powers by the

accumulated information. For that reason, the

server-based software has the ability of

analyzing the patterns of communications

between players by preprocess and adapting

the considered features to service balance.

There have been the previous load balancing

schemes in MMOGs for preventing the

presence of hotspots from degrading the

quality of the game world and considering the

reduction of the inter-server communication

overhead. However, there are little works on

that featured information issues. Therefore, our

work is beyond the qualification of the

tolerable load balancing because the details of

loads and the players’ demands in game world

are given rise to the Big-Data, making

enriched meaningful features.

The purpose of our work is to learn the

patterns of loads by these avatar world based

on the information obtained from the past

loads accumulated. In the virtual world,

learning the overhead patterns in advance can

benefit load balancing, prevent degradation of

quality of the game and enable the severs to

take prompt actions. In this paper, the past

loads provided by our developed game

simulation has been used as our experimental

dataset. Our studied past loads have the

following properties: the number of cells per

region, which assigned to a different server,

and how many cells it is linked with. To

exploit these properties, we proposed a novel

approach in terms of featured information. In

our approach, we combine a Sparse

Autoencoder[6] as our data reconstruction to

Journal of Korea Game Society JKGS ❙105

― Combing data representation by Sparse Autoencoder and the well-known load balancing algorithm, ProGReGA-KF ―

achieve a better representation of the inputs

and a well-known greedy graph partition

growing algorithm, ProGReGA[7]. The Sparsity

Autoencoder[6] can makes the most relevant

and less redundant of input data. So, the

preprocessed feature layer by the Sparse

Autoencoder[6] can further capture the most

relevant features from the past loads. The

proposed our algorithm is compared with the

representation-free version of ProGReGA-KF

[7] on the own simulation. It finds out that

our proposed algorithm has become more

stable and scalable than the representation-free

ProGReGA-KF[7] with the less number of

reducing player migrations between servers.

The rest of the paper is organized as follows.

The related work is presented in Section 2.

Section 3 describes the details of our proposed

algorithm. Section 4 gives the experimental

results and comparison. Finally, we conclude

our work in Section 5.

2. Related Works

The Internet of Things (IoT)[1] is rapidly

gaining ground in the field of modern wireless

telecommunications. The basic foundation of

the IoT is the pervasive presence around us of

a variety of things or objects—such as

radio-frequency identification (RFID) tags[5],

sensors, actuators, mobile phones—which,

through unique addressing schemes, are able

to interact with each other and cooperate with

their neighbors to reach common goals. In[8],

the authors combine the Phase Space

Reconstruction (PSR) and Group Method of

Data Handling method based on Evolutionary

Algorithm (EA-GMDH) for host load

prediction. The prediction performance of this

method is closely related to the parameters

they chose, as the evolutionary algorithm is a

stochastic global search method which may fall

into local optima. ESN is a rather recent

development in the field of RNN[8] and it lead

to a fast, simple and constructive algorithm for

supervised training of RNN. The basic idea of

ESN is to use a large reservoir RNN as a

supplier of interesting dynamics from which

the desired output is combined. The philosophy

adopted in Reservoir Computing is to consider

the recurrent layer as a large reservoir of

nonlinear transformations of the input data and

decouple the learning of parameters inside and

outside the reservoir.

Unsupervised feature learning[11] refers to a

class of machine learning techniques[12],

developed rapidly since 2006, where many

stages of nonlinear information processing in

hierarchical architectures are exploited for

pattern classification. Recently, unsupervised

feature learning technologies have been

successfully used in many research areas, such

as handwritten digit images recognition[3],

visual object classification[3] and nature

language process[3]. After initializing the deep

neural network with unsupervised feature

learning algorithms [e.g., autoencoder[6], matrix

factorization and restricted Boltzmann machines

(RBM)[4]], the weights are starting at a better

location in parameter space than if they had

been randomly initialized. Because the deep

neural network can also be considered to

perform feature learning, since they learn a

representation of their input at the hidden

layers which is subsequently used for

106 ❙ Journal of Korea Game Society 2017 Oct; 17(5): 103-112

― Sparse Autoencoder의 데이터 특징 추출과 ProGReGA-KF를 결합한 새로운 부하 분산 알고리즘 ―

classification or regression at the output layer.

One of load balancing schemes for distributed

MMOG servers, taking into account the use of

upload bandwidth of the server nodes[13]. The

scheme[7], which is divided into three phases,

proposed different algorithms for phase 2 (the

balancing phase), and ProGReGA[7] presented

the lowest overhead of all, while

ProGReGA-KF[7] presented the second fewest

migrations of players between servers, along

with the second lower overhead introduced and

a fair load distribution.

3. The proposed Algorithm

3.1 Sparse Autoencoder

[Fig. 1] Sparse Autoencoder

There are unlabeled training examples set

{x(1),x(2),x(3),...},where x(i)∊Rn. An autoencoder

neural network is an unsupervised learning

algorithm that applies backpropagation, setting

the target values to be equal to the inputs .i.e.,

it uses y(i)=x(i). It is trying to learn an

approximation to the identityfunction, hW,b(x)

≈ x, so that the output y
(i) is similar to x(i).

By applying constraints on the network, such

as by limiting the number of hidden units or

the average activation of the hidden units, we

can discover high-level features of the input

data. The features learned automatically can

improve the accuracy of the classification and

regression tasks comparing with the features

designed manually. There are arguments about

the number of hidden units being small or

large (perhaps even greater than the number

of input pixels). In particular, there is a

sparsity constraint on the hidden units, then

the autoencoder will still discover interesting

structure in the data, even if the number of

hidden units is large. For the overall cost

function, Equation 5, there are Equation 1 and

Equation 2 for the sparsity parameter, . In

Equation 1, aj
(2)(x) denotes the activation of

this hidden unit j in the autoencoder when the

network is given a specific input x. In

Equation 2, there is the constraint, where  is

a sparsity parameter, typically a small value

close to zero (say  = 0.05). In Equation 3,

there is an added extra penalty term to the

objective that penalizes j deviating

significantly from , where s2 is the number of

neurons in the hidden layer, and the index j is

summing over the hidden units. This penalty

term is based on the Kullback-Leibler(KL)[6]

divergence in Equation 4. The

Kullback-Leibler(KL)[6] divergence betweena

Bernoulli random variable with mean  and a

Bernoulli random variable with mean j. In

Equation 5, there is overall cost function,

Journal of Korea Game Society JKGS ❙107

― Combing data representation by Sparse Autoencoder and the well-known load balancing algorithm, ProGReGA-KF ―

where  controls the weight of the sparsity

penalty term and j depends on W, b, and the

activation of a hidden unit, j depends on the

parameters W, b.

j =







  



 [a
(2)

j(x
(i)
)] ------------------ Equation 1

j =  -------------------------------------- Equation 2


 



 log(/j)+ (1-) log((1-)/(1-j)) - Equation 3


 



 KL(||j)------------------------------- Equation 4

Jsparse(W,b) = J(W,b)+-
 



 KL(||j) ---- Equation 5

Algorithm: Local regions selection
1. local_group <-{R} #R is Region
2. local_weight <-wr(R) #Regions’ weight
3. local_capacity<-p(s(R)) #Power of Server of Region
4. average_usage<-local_weight/local_capacity
5. while average_usage > max(1, Utotal)do

 # Utotal s SystemUsage
6. if there is any not selected region neighbor to one
of local_group then
7. R<- not selected region neighbor to one of
local_group, with smallest
8. u(s(R)) #Region’s resource usage
9. else if there is any empty region then
10. R<- empty region with highest p(s(R))
11. else
12. stop when no more regions to select
13. end if
14. local_weight<-local_weight+wr(R)#Regions’weight
15. local_capacity<-p(s(R)) #Power of Server of Region
16. average_usage<-local_weight/local_capacity
17. local_group <- local_group  {R}
18. end while
19. Running the local balancing algorithm with local_group
as input

[Fig. 2] Local Regions Selection

3.2 ProGReGA

In the previous well-known load balance on

MMOGs, there are three phases, where firstly,

selecting the group of local regions, secondly,

balancing these regions, assigning to each one

a weight which is proportional to the power of

its server, and lastly, refining the partitioning,

reducing the overhead. In Fig. 2, there is a

phase of selecting local regions. In Fig. 3,

there is a load balancing algorithm, ProGReGA

[7] based on greedy region growing method to

allocate the heaviest cells to the regions

managed by the most powerful servers.

However, the input of the algorithm receives a

list of the regions without data representation.

So, it is not achievable and scalable in terms

of Big-Data[2].

Algorithm: ProGReGA
1. weight_to_divide <-0
2. free_capacity <-0
3. for each region R in Region_List do
4. weight_to_divide <- weight_to_divide + wr(R)
5. free_capacity <- free_capacity + p(s(R))
6. Free all cells from R temporarily
7. end for
8. Sort Region_List in decreasing order of p(s(R))
9. for each region R in Region_List do
10. weight_share <-weight_to_divide ×
p(s(R))/free_capacity
11. while wr(R)<weight_sharedo
12. if there is any cell from R neighboring a free
cell then
13. R <- R  {neighbor free cell with the
highest Intc(AC)}
14. else if there is any free cell then
15. R <- R  {the heaviest free cell}
16. else
17. Stop no more free cells
18. end if
19. end while
20. end for

[Fig. 3] ProGreGA Algorithm

3.3 ProGReGA-KF

Algorithm: ProGReGA-KF
1. weight_to_divide <-0
2. free_capacity <-0
3. for each region R in Region_List do
4. weight_to_divide <- weight_to_divide + wr(R)
5. free_capacity <- free_capacity + p(s(R))
6. cell_list <- list of cells from R in increasing order of weight
7. while fracr(R) > fracp(s(R)) do
8. C<-first element from cell_list
9. Remove C from R
10. Remove C from cell_list
11. end while
12. end for
13. Sort Region_List in increasing order of u(s(R))
14. for each region R in Region_List do
15. weight_share <-weight_to_divide × p(s(R))/free_capacity
16. while wr(R)<weight_sharedo
17. if there is any cell from R neighboring a free cell then
18. R <- R  {neighbor free cell with the highest
Intc(AC)}
19. else if there is any free cell then
20. R <- R  {the heaviest free cell}
21. else
22. Stop no more free cells
23. end if
24. end while
25. end for

[Fig. 4] ProGReGA-KF Algorithm

In this section there is another load

108 ❙ Journal of Korea Game Society 2017 Oct; 17(5): 103-112

― Sparse Autoencoder의 데이터 특징 추출과 ProGReGA-KF를 결합한 새로운 부하 분산 알고리즘 ―

balancing algorithm, ProGReGA-KF[7] based

on greedy region growing method like

ProGReGA[7]. In this algorithm, each region

will gradually release its cells in increasing

order of weight, until its weight fraction is

less than or equal to the power fraction of its

server. Therefore the heaviest cells remain on

the same server and most players do not need

to migrate. Moreover, there is an advantage

that the possibility of fragmenting the regions,

with many isolated cells, increasing the

overhead could be mitigated by the weight

fraction of the region, fracr(R).

3.4 The proposed Algorithm

Algorithm: ProGReGA with Sparse Autoencoder
Input: Each_Cell in all regions, C = {1, 2, … n},
Output: Region_List based on Data Reduction
1. E=Encoded(Input, activation=’relu’)
2. D=Decoded(E, activation=’sigmoid’)
3. AC=Autoencoder(Input, D)
4. weight_to_divide <-0
5. free_capacity <-0
6. for each region R in Region_List do
7. weight_to_divide <- weight_to_divide + wr(R)
8. free_capacity <- free_capacity + p(s(R))
9. Free all cells from R temporarily
10. end for
11. Sort Region_List in decreasing order of p(s(R))
12. for each region R in Region_List do
13. weight_share <-weight_to_divide × p(s(R))/free_capacity
14. while wr(R)<weight_sharedo
15. if there is any cell from R neighboring a free cell then
16. R <- R  {neighbor free cell with the highest
Intc(AC)}
17. else if there is any free cell then
18. R <- R  {the heaviest free cell}
19. else
20. Stop no more free cells
21. end if
22. end while
23. end for

[Fig. 5] The proposed Algorithm

In this section, we explain our proposed

model in details. Likewise the proposed scheme

ProGReGA-KF[7], players who are interacting

with each other should be connected to the

same server. If two avatars of two different

players might be distant from each other, both

could be interacting with a third avatar

between them. So, it is necessary to consider

how many pairs of players and which of them

will be divided into different server. Our

approach is to exploit data representation by

Sparse Autoencoder[6]. The overhead patterns

obtained from the past loads can be a criterion

of load balancing. In our approach, likewise

ProGReGA-KF[7], the main aspect in our

solution is focusing each server’s local

information that initiated the balancing process

and its neighbors and accumulated information

on each sever. In this regards, we attempt to

map original data space to a new space which

is more suitable for maximizing the relevant

features as a good feature representation. The

Sparse Autoencoder learning algorithm[6],

which is one approach to automatically learn

features from unlabeled data. After the

preprocessed feature layer by the Sparse

Autoencoder[6], the proposed algorithm has the

simple phases like ProGReGA[7] for balancing

these regions and partitioning for the overhead

reduction.

4. Performance Evaluation

In our work, our proposed algorithm,

combining Sparse Autoencoder[6] and

ProGReGA[7] is compared with the

well-known research ProGReGA-KF[7]. For

the evaluations, we consider a heterogeneous

system, simulate our algorithm on a grid-like

square cells, select a cell with the lowest

interaction in the smallest cell cluster by the

overloaded sever and transfer the loads of the

selected server to the least loaded one.

However, the previous one, ProGReGA-KF[7]

have been forcing an uneven distribution of

avatars in the virtual environment, putting to

test the load balancing algorithms. The

Journal of Korea Game Society JKGS ❙109

― Combing data representation by Sparse Autoencoder and the well-known load balancing algorithm, ProGReGA-KF ―

purpose of the previous research,

ProGReGA-KF[7] was how to take account of

hotspots form the regions and reduce the

distribution overhead. On the other way round,

in a normal game world, “graceful

degradation” is more realistic[7]. Therefore, in

our performance evaluation, we consider the

normal real game world. As our simulation

based on Unity3D[9] begins, they start to

move according to the random model[7]. The

environment of the simulation is consisted of a

two-dimensional space, divided by cells, which

is belonged to some region. It can be

transferred to another region for load

balancing. We can take into consideration in

the average weight of a region on the criterion

of proportional balance and the number of

migrations by the defined formulae in Chapter

3. Also, we can calculate how many time

differences for preprocess between our

proposed algorithm, combining Sparse

Autoencoder[6] and ProGReGA[7] and the

previous one ProGReGA-KF[7] in terms of Big

Data.

[Fig. 6(b)] The comparison our proposed

algorithm (AE+ProGreGA) with the well-known

Algorithm (ProGReGA-KF)

[Fig. 6(a)] The comparison our proposed

algorithm (AE+ProGreGA) with the well-known

Algorithm (ProGReGA-KF)

[Fig. 6] shows the one of important results

that our proposed algorithm has some

advantages with respect to preprocess of

Big-Data. With the reasonable size of data,

load balance can be possible to handle during

the game session. When it comes to Big-Data,

preprocess become increasingly important. If

the output of preprocess are given in a

reasonable time to the load balance

management, still having information

meaningful, then load balance itself is

considerably of serve to players during game

session without letting the players know.

According to the load balance depends on the

specific games such as real-time games in

which users constantly migrate between

servers, causing delay and hinder of the

interaction between players, our proposed

algorithm can be considered more stable and

achievable. Our proposed preprocess can handle

the information from Big-Data by simplifying

and managing in the proportion to the size of

accumulated data.

110 ❙ Journal of Korea Game Society 2017 Oct; 17(5): 103-112

― Sparse Autoencoder의 데이터 특징 추출과 ProGReGA-KF를 결합한 새로운 부하 분산 알고리즘 ―

We notice that it is considerably scalable

than the previous version ProGREGA-KF[7] in

terms of data representation of Sparse

Autoencoder[6]. Specifically, in comparing Fig.

6(a) and Fig. 6(b), we can see that in terms

of no migrations, our proposed algorithm is

much more realistic. The reason for that is

that our load balancing part of the proposed

algorithm follows the development of

ProGReGA. In the performance evaluation in

[7], ProGReGA was mentioned that it has the

lowest overhead as it was designed precisely

to create the most realistic regions, causing

the number of migrations manageable.

5. Conclusion

We have suggested the algorithm combining

Sparse Autoencoder[6], one of the most used

data representation, and ProGREGA[7], the

most well-known load balancing scheme for

distributed MMOG servers. Information

obtained from the past loads of servers based

on the demands of players are getting formed

down into Big-Data. Our proposed algorithm

tries to overcome consuming a huge amount of

preprocessing time in terms of Big-Data.

According to learning the loads patterns in

advance can benefit load balancing, our

proposed algorithm can exploit these properties

by data representation of Sparse Autoencoder

[6]. The proposed our algorithm is compared

with the representation-free version of

ProGReGA-KF[7]. Our proposed preprocess

can handle the information from Big-Data by

simplifying and managing in the proportion to

the size of accumulated past data. Because

preprocess is given in a reasonable time to the

load balance management, load balance as the

reaction of servers is considerably of serve to

players during game session without letting

the players know. Therefore, our proposed

algorithm have become more scalable than the

representation-free ProGReGA-KF[7] in terms

of Big-Data[2]. Specifically, if it is designed

precisely to create the most realistic regions,

causing the number of migrations manageable,

our proposed algorithm can be considered more

stable and achievable.

ACKNOWLEDGMENTS

This research was supported by Basic

Science Research Program through the

National Research Foundation of Korea(NRF)

funded by the Ministry of Science, ICT &

Future Planning(No. 2016RIA2B4012386)

REFERENCES

 [1] D, Giusto, A. Iera, G Morabito, L. Atzori

(eds) (2010) The Internet of Things.

Springer, New York. ISBN

978-1-4419-1673-0

 [2] IBM, Bringing Big Data to the Enterprise.

http://www-01.ibm.com/software/data/bigdata

/

 [3] Hinton, Geoffrey E., Simon Osindero, and

Yee-Whye Teh. “A fast learning algorithm

for deep belief nets.” Neural computation,

Vol.18, No.7, pp.1527-1554, 2006.

 [4] Fischer, Asja, and Christian Igel. “An

introduction to restricted Boltzmann

machines.” Progress in Pattern Recognition,

Image Analysis, Computer Vision, and

Applications. Springer Berlin Heidelberg,

pp.14-36, 2012.

 [5] H.-Y. Kim, “A load balancing scheme with

Journal of Korea Game Society JKGS ❙111

― Combing data representation by Sparse Autoencoder and the well-known load balancing algorithm, ProGReGA-KF ―

Loadbot in IoT networks”Journal of

Supercomputing, Vol.73, pp.1-12, 2017. 7. DOI

10.1007/s11227-017-2087-6,

 [6] Andrew Ng, “Sparse Autoencoder”,

https://web.stanford.edu/class/cs294a/sparseAu

toencoder_2011new.pdf

 [7] C. Eduardo, B. Bezerra, C. Fernando, and R.

Geyer, “A load balancing scheme for

massively multiplayer online games”,

Multimed. Tools Appl. (2009) Vol. 45, pp.263

–289, DOI 10.1007/s11042-009-0302-z

 [8] Q. Yang, Y. Zhou, Y. Yu, J. Yuan, X. Xing,

S. Du, “Multi-step-ahead host load prediction

using autoencoder and echo state networks

in cloud”, J Supercomput (2015) Vol.71,

pp.3037–3053, DOI

10.1007/s11227-015-1426-8

 [9] Unity3D, https://unity3d.com/kr/

[10] C. Song, F. Liu, Y. Huang, L. Wang, and T.

Tan, “Auto-encoder Based Data Clustering”,

CIARP 2013, LNCS 8258, pp.117–-124, 2013.

[11] Ian Goodfellow, "Generative Adversarial

Networks, NIPS 2016 Tutorial, 2016

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A.

Graves, I. Antonoglou, D. Wierstra, and M.

Riedmiller, "Playing Atari with Deep

Reinforcement Learning", NIPS 2016

[13] Jung-min Park, Hye-Young Kim, “A Study

of Smart IT convergence Framework

applying a Lego-typed Sensor Module”,

Journal of Korea Game Society, vol.16, No.3,

pp. 87-96

김 차 영 (Kim, Cha Young)

2006 고려대학교 컴퓨터학과 이학박사

2005-2008 KISTI 선임프로젝트연구원

2009- 경기대학교 컴퓨터과학과 초빙교수

관심분야: 빅데이터, 머신러닝, 딥러닝 강화학습, IoT,

클라우드 컴퓨팅, 게임개발

김 혜 영 (Kim, Hye Young)

2005 고려대학교 컴퓨터학과 이학박사

2005-2006 Wright State Uni. Post-Doc.

2014 New York State University at Albany 방문교수

2007- 홍익대학교 게임학부 부교수

관심분야: 모바일게임 온라인게임서버 게임엔진

IoT 기반의 게임 서비스 및 게임개발

박 정 민 (Park, Jung Min)

2010-2017 홍익대학교 게임학부 졸업

2017- 홍익대학교 일반대학원 게임학부(공학)재학중

관심분야: 온라인 게임 서버, 모바일 게임,게임프로그래밍

112 ❙ Journal of Korea Game Society 2017 Oct; 17(5): 103-112

― Sparse Autoencoder의 데이터 특징 추출과 ProGReGA-KF를 결합한 새로운 부하 분산 알고리즘 ―

