DOI QR코드

DOI QR Code

Initial Reaction of Hexachlorodisilane on Amorphous Silica Surface for Atomic Layer Deposition Using Density Functional Theory

  • Kim, Ki-Young (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Yang, Jin-Hoon (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Shin, Dong-Gung (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education)
  • Received : 2017.08.01
  • Accepted : 2017.09.08
  • Published : 2017.09.30

Abstract

The initial reaction of hexachlorodisilane ($Si_2Cl_6$, HCDS) on amorphous silica ($SiO_2$) surface for atomic layer deposition was investigated using density functional theory. Two representative reaction sites on the amorphous $SiO_2$ surface for HCDS reaction, a surface hydroxyl and a two-membered ring, were considered. The reaction energy barrier for HCDS on both sites was higher than its adsorption energy, indicating that it would desorb from the surface rather than react with the surface. At high temperature range, some HCDSs can have kinetic energy high enough to overcome the reaction energy barrier. The HCDS reaction on top of the reacted HCDS was investigated to confirm its self-limiting characteristics.

Keywords

References

  1. R. W. Johnson, A. Hultqvist, and S. F. Bent, "A Brief Review of Atomic Layer Deposition: from Fundamentals to Applications," Materials Today, 17 [5] 236-46 (2014). https://doi.org/10.1016/j.mattod.2014.04.026
  2. T. Kaariainen, D. Cameron, M.-L. Kaariainen, and A. Sherman, Atomic Layer Deposition; 2nd ed., pp. 1-31, Scrivener Publishing and Wiely, Beverly, 2013.
  3. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, "Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges," J. Vac. Sci. Technol. A, 29 [5] 050801 (2011).
  4. H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, "Conformality of Plasma-Assisted ALD: Physical Processes and Modeling," J. Electrochem. Soc., 157 [12] G241-49 (2010). https://doi.org/10.1149/1.3491381
  5. S. M. George, "Atomic Layer Deposition: An Overview," Chem. Rev., 110 [1] 111-31 (2010). https://doi.org/10.1021/cr900056b
  6. J.-S. Kim, J.-H. Yang, Y.-C. Jeong, D.-H. Kim, S.-B. Baek, and Y.-C. Kim, "Effect of Amino Ligand Size of Si Precursors on Initial Reaction with an -OH-Terminated Si (001) Surface for Atomic Layer Deposition," Jpn. J. Appl. Phys., 53 [8S3] 08NE04 (2014). https://doi.org/10.7567/JJAP.53.08NE04
  7. J.-H. Yang, S.-B. Baek, and Y.-C. Kim, "Initial Surface Reaction of Di-Isopropylaminosilane on a Fully Hydroxyl-Terminated Si (001) Surface," J. Nanosci. Nanotechnol., 14 7954-60 (2014). https://doi.org/10.1166/jnn.2014.9474
  8. I. Suzuki, C. Dussarrat, and K. Yanagita, "Extra Low-Temperature $SiO_2$ Deposition Using Aminosilanes," ECS Trans., 3 [15] 119-28 (2007).
  9. S.-B. Baek, D.-H. Kim, and Y.-C. Kim, "Adsorption and Surface Reaction of Bis-Diethylaminosilane as a Si Precursor on an OH-Terminated Si (001) Surface," Appl. Surf. Sci., 258 6341-44 (2012). https://doi.org/10.1016/j.apsusc.2012.03.033
  10. B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, "$SiO_2$ Atomic Layer Deposition Using Tris(dimethylamino) silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy," J. Phys. Chem. C, 113 8249-57 (2009).
  11. Y.-C. Jeong, S.-B. Baek, D.-H. Kim, J.-S. Kim, and Y.-C. Kim, "Initial Reaction of Silicon Precursors with a Varying Number of Dimethylamino Ligands on a Hydroxyl-Terminated Silicon (001) Surface," Appl. Surf. Sci., 280 207-11 (2013). https://doi.org/10.1016/j.apsusc.2013.04.129
  12. X. Meng, Y.-C. Byun, H. S. Kim, J. S. Lee, A. T. Lucero, L. Cheng, and J. Kim, "Atomic Layer Deposition of Silicon Nitride Thin Films: A Review of Recent Progress, Challenges, and Outlooks," Materials, 9 1-20 (2016).
  13. S. Kotamraju, B. Krishnan, G. Melnychuk, and Y. Koshka, "Low-Temperature Homoepitaxial Growth of 4H-SiC with $CH_3Cl$ and $SiCl_4$ Precursors," J. Crystal Growth, 312 645-50 (2010). https://doi.org/10.1016/j.jcrysgro.2009.12.017
  14. K. H. Chung, N. Yao, J. Benziger, J. C. Sturm, K. K. Signh, D. Carlson, and S. Kuppuoao, "Ultrahigh Growth Rate of Epitaxial Silicon by Chemical Vapor Deposition at Low Temperature with Neopentasilane," Appl. Phys. Lett., 92 113506 (2008). https://doi.org/10.1063/1.2897325
  15. R. C. Taylor and B. A. Scott, "Hexachlorodisilane as a Precursor in the LPCVD of Silicon Dioxide and Silicon Oxynitride Films," J. Electrochem. Soc., 136, 2382-85 (1989). https://doi.org/10.1149/1.2097375
  16. K. Park, W.-D. Yun, B.-J. Choi, H.-D. Kim, W.-J. Lee, S.-K. Rha, and C.-O. Park, "Growth Studies and Characterization of Silicon Nitride Thin Films Deposited by Alternating Exposures to $Si_2Cl_6$ and $NH_3$," Thin Solid Films, 517 3975-78 (2009). https://doi.org/10.1016/j.tsf.2009.01.118
  17. G. Kresse and J. Hafner, "Ab initio Molecular Dynamics for Liquid Metals," Phys. Rev. B, 47 558-61 (1993). https://doi.org/10.1103/PhysRevB.47.558
  18. G. Kresse, Ab initio Molekular Dynamik fur flussige Metalle, in PhD Thesis, Technische Universitat Wien, Wien, 1993.
  19. G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  20. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  21. P. E. Blochl, "Projector Augmented-Wave Method," Phys. Rev. B, 50 [24] 17953-79 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  22. G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," Phys. Rev. B, 59 [3] 1758-75 (1999).
  23. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  24. S. Grimme, "Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction," J. Comput. Chem., 27 1787-99 (2006). https://doi.org/10.1002/jcc.20495
  25. G. Henkelman and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901-4 (2000). https://doi.org/10.1063/1.1329672
  26. J. Shen, K. Muthukumar, H. O. Jeschke, and R. Valenti, "Physisorption of an Organometallic Platinum Complex on Silica: An ab initio Study," New J. Phys., 14 073040 (2012). https://doi.org/10.1088/1367-2630/14/7/073040
  27. T. L. Cottrell, The Strengths of Chemical Bonds, 2nd ed., pp. 272-83, Butterworths, London, 1958.
  28. D. A. Keen and M. T. Dove, "Local Structures of Amorphous and Crystalline Phases of Silica, $SiO_2$, by Neutron Total Scattering," J. Phys.: Condens. Matter., 11 [47] 9263-73 (1999). https://doi.org/10.1088/0953-8984/11/47/311
  29. R. A. Wind and S. M. George, "Quartz Crystal Microbalance Studies of $Al_2O_3$ Atomic Layer Deposition Using Trimethylaluminum and Water at $125^{\circ}C$", J. Phys. Chem. A, 114 [3] 1281 (2010). https://doi.org/10.1021/jp9049268
  30. H. J. W. Muller-Kirsten, Basics of Statistical Physics; 2nd ed., pp. 11-22, World Scientific, 2013.

Cited by

  1. Ozone based high-temperature atomic layer deposition of SiO2thin films vol.59, pp.9, 2017, https://doi.org/10.35848/1347-4065/ab78e4
  2. Search for adsorption geometry of precursor on surface using genetic algorithm: MoO2Cl2 on SiO2 surface vol.57, pp.6, 2017, https://doi.org/10.1007/s43207-020-00079-0