DOI QR코드

DOI QR Code

Displacement Prediction of Swept Composite Cantilevered Panel Wings Using Strains

변형률을 이용한 복합재 평판 후퇴익 구조물의 변위 예측

  • Kim, Mun-Guk (Department of Aerospace Engineering, Chungnam National University) ;
  • You, Je-Gyun (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, So-Young (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Geun-Sang (Department of Aerospace Engineering, Chungnam National University) ;
  • Jeon, Min-Hyeok (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2017.07.19
  • Accepted : 2017.10.25
  • Published : 2017.10.31

Abstract

The complex deformation of the swept composite wing occurs due to the torsional load and bending load during the flight. Therefore, prediction for displacement of swept composite wing is required for structural health monitoring. Wing displacements can be predicted by using relationship between displacements and strains. The strain distributions on the fixed-end are complex due to the geometric shape of the swept wing. Because of those strain distribution, the wing displacement can be diversely predicted by the strain sensing locations. In this paper, displacements prediction of swept composite wing was performed by considering complex strain distributions. The predicted displacements under various loading condition were consistent with those calculated by FEA and verified through the bending test.

복합재 후퇴익은 비행 중 굽힘 하중 외에도 비틀림 하중을 받아 복잡한 변형이 발생할 수 있다. 따라서 복잡한 변형이 나타나는 복합재 후퇴익의 구조 건전성 평가를 위해 복합재 후퇴익 구조물의 변위 예측이 요구된다. 날개의 변위 예측은 변위와 변형률 관계를 통해 예측할 수 있지만 후퇴익의 복잡한 변형으로 고정단 부근의 변형률 분포는 복잡하게 나타나기 때문에 일부 위치의 변형률 센서만으로 변형률을 측정하면 변위 예측의 오차가 발생할 수 있다. 본 논문에서는 복잡한 변형률 분포를 고려한 평판 형태의 복합재 후퇴익의 변위를 예측하는 연구를 수행하였다. 유한요소 해석을 통해 변형률 측정 지점을 선정하였다. 측정 지점의 변형률을 이용하여 예측한 변위는 해석에서 계산된 변위와 잘 일치하였으며, 실험을 통하여 검증하였다.

Keywords

References

  1. Zender, G.W., and Books, W.A. Jr., "An Approximate Method of Calculating the Deformations of Wings Having Swept, M or W, ${\wedge}$ and Swept-tip Plan Forms," NASA Technical Publication, NACA-RM-L53A23, 1953.
  2. Ko, W.L., Richards, W.L., and Tran, V.T., Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures," NASA Technical Publication, No. 214612, 2007.
  3. Ko, W.L., and Fleischer, V., "Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures," NASA Technical Publication, No. 214643, 2009.
  4. Lung, S.F., and Ko, W.L., "Applications of Displacement Transfer Functions to Deformed Shape Predictions of the G-III Swept-Wing Structure," 30th Congress of the International Council of the Aeronautical Sciences, Daejeon, Korea, Sep. 2016.
  5. Park, S.H., Kim, I.G., Lee, H.S., and Kim, M.S., "Prediction for Large Deformation of Cantlever Beam Using Strains," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 10, 2015, pp. 1-11. https://doi.org/10.5139/JKSAS.2015.43.1.1
  6. Lee, H.S., Kim, I. G., Park, S.H., and Kim, M.S., "The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 1, 2016, pp. 17-23.
  7. Kim, G.S., Kim, I.G., Park, S.H., Lee, H.S., and Kim, M.S., "Displacement Prediction of Plate with a Cut-out Using the Strains," KSAS Fall Conference, Jeju, Korea, Nov. 2015, pp. 164-167.