References
- Lu XM, Lu PZ, Zhang H. Bacterial communities in manures of piglets and adult pigs bred with different feeds revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 2014;98:2657-65. https://doi.org/10.1007/s00253-013-5211-4
- Yang L, Bian G, Su Y, Zhu W. Comparison of faecal microbial community of lantang, bama, erhualian, meishan, xiaomeishan, duroc, landrace, and yorkshire sows. Asian-Australas J Anim Sci 2014;27: 898-906. https://doi.org/10.5713/ajas.2013.13621
- Kim HB, Isaacson RE. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol 2015;177:242-51. https://doi.org/10.1016/j.vetmic.2015.03.014
- Zhang J, Guo Z, Xue Z, et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 2015;9:1979-90. https://doi.org/10.1038/ismej.2015.11
- Bunter K, Bennett C. Genotype comparisons for meat and eating quality traits. Pig Genetics Workshop; 2004.
- Babol J, Zamaratskaia G, Juneja RK, Lundstrom K. The effect of age on distribution of skatole and indole levels in entire male pigs in four breeds: Yorkshire, Landrace, Hampshire and Duroc. Meat Sci 2004;67:351-8. https://doi.org/10.1016/j.meatsci.2003.11.008
- Pajarillo EA, Chae JP, Balolong MP, et al. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol 2014;52:646-51. https://doi.org/10.1007/s12275-014-4270-2
- Hugerth LW, Wefer HA, Lundin S, et al. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol 2014;80:5116-23. https://doi.org/10.1128/AEM.01403-14
- Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-41. https://doi.org/10.1128/AEM.01541-09
- Ramayo-Caldas Y, Mach N, Lepage P, et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J 2016;10:2973-7. https://doi.org/10.1038/ismej.2016.77
- Lamendella R, Domingo JWS, Ghosh S, Martinson J, Oerther DB. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol 2011;11:1-17. https://doi.org/10.1186/1471-2180-11-1
- Kim HB, Borewicz K, White BA, et al. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 2011;153:124-33. https://doi.org/10.1016/j.vetmic.2011.05.021
- Miyanaga A, Shimizu K, Noro R, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80. https://doi.org/10.1038/nature09944
- Mukherjee PK, Sendid B, Hoarau G, et al. Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2015;12:77-87. https://doi.org/10.1038/nrgastro.2014.188
- Hildebrand F, Nguyen TL, Brinkman B, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 2013;14:R4. https://doi.org/10.1186/gb-2013-14-1-r4
- Edward ABP, Jong-Pyo C, Marilen PB, Hyeun BK, Dae-Kyung K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol 2014;60:140-6. https://doi.org/10.2323/jgam.60.140
- Pedersen R, Ingerslev HC, Sturek M, et al. Characterisation of gut microbiota in Ossabaw and Gottingen minipigs as models of obesity and metabolic syndrome. PLoS One 2013;8:e56612. https://doi.org/10.1371/journal.pone.0056612
- Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature 2013;486:207-14.
- McKnite AM, Perez-Munoz ME, Lu L, et al. Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One 2012;7:e39191. https://doi.org/10.1371/journal.pone.0039191
- Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol 2016;24:523-4. https://doi.org/10.1016/j.tim.2016.02.015
- Yang W, Meng F, Peng J, et al. Isolation and identification of a cellulolytic bacterium from the Tibetan pig's intestine and investigation of its cellulase production. Electron J Biotechnol 2014;17:262-7. https://doi.org/10.1016/j.ejbt.2014.08.002
- Kim TH, Kim KS, Choi BH, et al. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J Anim Sci 2005;83:2255-63. https://doi.org/10.2527/2005.83102255x
- Scott KP, Duncan SH, Flint HJ. Dietary fibre and the gut microbiota. Anticancer Res 2008;33:201-11.
- Peng LY, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009;139:1619-25. https://doi.org/10.3945/jn.109.104638
- Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282-6. https://doi.org/10.1038/nature08530
- Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011;469: 543-7. https://doi.org/10.1038/nature09646
- Shah HN, Collins MD. Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 1989;39:85-7. https://doi.org/10.1099/00207713-39-1-85
- Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488:178-84. https://doi.org/10.1038/nature11319
- Ellekilde M, Selfjord E, Larsen CS, et al. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci Rep 2013;4:5922.
Cited by
- Studying the Differences of Bacterial Metabolome and Microbiome in the Colon between Landrace and Meihua Piglets vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01812
- Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics vol.19, pp.6, 2018, https://doi.org/10.4142/jvs.2018.19.6.798
- Diversity of bacterial community during ensiling and subsequent exposure to air in whole-plant maize silage vol.31, pp.9, 2018, https://doi.org/10.5713/ajas.17.0860
- Exploring the Fecal Microbial Composition and Metagenomic Functional Capacities Associated With Feed Efficiency in Commercial DLY Pigs vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00052
- Gut Microbiota Is a Major Contributor to Adiposity in Pigs vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.03045
- Microbial Community and Short-Chain Fatty Acid Mapping in the Intestinal Tract of Quail vol.10, pp.6, 2017, https://doi.org/10.3390/ani10061006
- Gut and Vagina Microbiota Associated With Estrus Return of Weaning Sows and Its Correlation With the Changes in Serum Metabolites vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.690091
- Timely Control of Gastrointestinal Eubiosis: A Strategic Pillar of Pig Health vol.9, pp.2, 2017, https://doi.org/10.3390/microorganisms9020313
- Identification of Enterotype and Its Effects on Intestinal Butyrate Production in Pigs vol.11, pp.3, 2021, https://doi.org/10.3390/ani11030730
- Comparative Microbial Profiles of Colonic Digesta between Ningxiang Pig and Large White Pig vol.11, pp.7, 2017, https://doi.org/10.3390/ani11071862
- The Impact of Genetics on Gut Microbiota of Growing and Fattening Pigs under Moderate N Restriction vol.11, pp.10, 2021, https://doi.org/10.3390/ani11102846
- Effect of host breeds on gut microbiome and serum metabolome in meat rabbits vol.17, pp.1, 2017, https://doi.org/10.1186/s12917-020-02732-6