References
- Lucas A. Programming by early nutrition a man. Ciba Found Symp 1991;156:38-50.
- Arnett AM, Dikeman ME, Daniel MJ, et al. Effects ofvitamin A supplementation and weaning age on serum and liver retinol concentrations, carcass traits, and lipid composition in market beef cattle. Meat Sci 2009;81:596-606. https://doi.org/10.1016/j.meatsci.2008.10.017
- Schoonmarker JP, Cecava MJ, Faulkner FL, et al. Effect of source of energy and rate of growth on performance, carcass characteristics, ruminal fermentation, and serum glucose and insulin of early-weaned steers. J Anim Sci 2003;81:843-55. https://doi.org/10.2527/2003.814843x
- Myers SE, Faulkner DB, Ireland FA, Berger LL, Parrett DF. Production systems comparing early weaning to normal weaning with or without creep feeding for beef steers. J Anim Sci 1999;77:300-10. https://doi.org/10.2527/1999.772300x
- Bach AA, Gimenez J, Juaristi L, Ahedo J. Effects of physical from of a starter for dairy replacement calves on feed intake and performance. J Dairy Sci 2007;90:3028-33. https://doi.org/10.3168/jds.2006-761
- Cheng KJ, McAllister TA, Popp JD, et al. A review of bloat in feedlot cattle. J Anim Sci 1998;76:299-308. https://doi.org/10.2527/1998.761299x
- Nagaraja TG, Chengappa MM. Liver abscess in feedlot cattle: A review. J Anim Sci 1998;76:287-98. https://doi.org/10.2527/1998.761287x
- National Research Council (NRC). Nutrient requirements of beef cattle. 7th rev. ed. Washington, DC: National Academy Press; 2000.
- Suarez BJ, Van Reenen CG, Stockhofe N, Dijkstra J, Gerrits WJJ. Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves. J Dairy Sci 2007; 90:2390-403. https://doi.org/10.3168/jds.2006-524
- Sato T, Hidaka K, Mishima T, et al. Effect of sugar supplementation on rumen protozoa profile and papillae development in retarded growth calves. J Vet Med Sci 2010;72:1471-4. https://doi.org/10.1292/jvms.09-0399
- Kristensen NB, Sehested J, Jensen SK, Vestergaard M. Effect of milk allowance on concentrate intake, ruminal environment, and ruminal development in milk-fed holstein calves. J Dairy Sci 2007;90:4346-55. https://doi.org/10.3168/jds.2006-885
- Lowman BG, Scott NA, Somerville SH. Condition scoring for cattle. Tech. Bull. No. 6, Edinburgh, UK: East of Scotland College of Agriculture;1976.
- McGavin MD, Morrill JL. Scannig electron microscopy of ruminal papillae in calves fed various amounts and forms of roughage. Am J Vet Res 1976;37:497-508.
- Lesmeister KE, Heinrichs AJ. Effects of corn processing on growth characteristics, rumen development and rumen parameters in neonatal dairy calves. J Dairy Sci 2004;87:3439-50. https://doi.org/10.3168/jds.S0022-0302(04)73479-7
- Suarez BJ, Van Reenen CG, Gerrits WJJ, et al. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets:II. Rumen development. J Dairy Sci 2006;89:4376-86. https://doi.org/10.3168/jds.S0022-0302(06)72484-5
- Kato D, Suzuki Y, Haga S, et al. Utilization of digital differential display to identify differentially expressed genes related to rumen development. Anim Sci J 2016;87:584-90. https://doi.org/10.1111/asj.12448
- Moya D, Mazzenga A, Holtshausen L, et al. Feeding behavior and ruminal acidosis in beef cattle offered a total mixed ration or dietary components separately. J Anim Sci 2001;89:520-30.
- Sarwar M, Firkins JL, Eastridge ML. Effect of replacing neutral detergent fibre of forage with soy hulls and corn gluten feed for dairy heifers. J Dairy Sci 1991;74:1006-17. https://doi.org/10.3168/jds.S0022-0302(91)78250-7
- Labussiere E, Dubois S, van Milgen J, Bertrand G, Noblet J. Effect of solid feed on energy and protein utilization in milkfed veal calves. J Anim Sci 2009;87:1106-19. https://doi.org/10.2527/jas.008-1318
- Brown MS, Ponce CH, Pulikanti R. Adaptation of beef cattle to highconcentrate diets: Perfrormance and ruminal metabolism. J Anim Sci 2006;84:E25-E33. https://doi.org/10.2527/2006.8413_supplE25x
- Roth BA, Keil NM, Gygax L, Hillmann E. Influence of weaning method on health status and rumen development in dairy calves. J Dairy Sci 2009;92:645-56. https://doi.org/10.3168/jds.2008-1153
- Sweeney BC, Rushen JP, Weary DM, de Passille AMB. Duration of weaning, starter intake, and weight gain of dairy calves fed large amounts of milk. J Dairy Sci 2010;93:148-52. https://doi.org/10.3168/jds.2009-2427
- Johnson DE, Johnson KA, Baldwin RL. Changes in liver and gastrointestinal tract energy demands in response to physiological workload in ruminants. J Nutr 1990;120:649-55. https://doi.org/10.1093/jn/120.6.649
- Seal CJ, Reynolds CK. Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutr Res Rev 1993;6:185-208. https://doi.org/10.1079/NRR19930012
- Ortigues I, Doreau M. Responses of the splanchnic tissues of ruminants to changes in intake: absorption of digestion end products, tissue mass, metabolic activity and implications to whole animal energy metabolism. Ann Zootech 1995;44:321-46.
- Khan MA, Lee HJ, Lee WS, et al. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves. J Dairy Sci 2008; 91:1140-49. https://doi.org/10.3168/jds.2007-0337
- Warner RG, Flatt WP. Physiology of digestion in the ruminant. London UK: Butterworths Pub. Co.; 1965.
- Bartle SJ, Preston RL. Roughage level and limited maximum intake regimens for feedlot steers. J Anim Sci 1992;70:3293-303. https://doi.org/10.2527/1992.70113293x
- Connor EE, Baldwin RL, Li CJ, Li RW, Chung H. Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth. Funct Integr Genomics 2013;13:133-42. https://doi.org/10.1007/s10142-012-0308-x
- Wang S, Zhou Y, Andreyev O, et al. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia. Exp Cell Res 2014;323:56-65. https://doi.org/10.1016/j.yexcr.2014.02.015
- Schoonmaker JP, Loerch SC, Fluharty FL, Zerby HN, Turner TB. Effect of age at feedlot entry on performance and carcass characteristics of bulls and steers. J Anim Sci 2002;80:2247-54.
- Smith SB, Crouse JD. Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. J Nutr 1984;114:792-800. https://doi.org/10.1093/jn/114.4.792
- Brown EG, Vandehaar MJ, Daniels KM, et al. Effects of increasing energy and protein intake on body growth and carcass composition of heifer calves. J Dairy Sci 2005;88:585-94. https://doi.org/10.3168/jds.S0022-0302(05)72722-3
Cited by
- Effects of High Levels of Nutrients on Growth Performance and Carcass Characteristics of Hanwoo Cattle vol.38, pp.3, 2018, https://doi.org/10.5333/KGFS.2018.38.3.180
- Effects of rearing system and feeding intensity on the fattening performance and slaughter value of young crossbred bulls vol.18, pp.3, 2017, https://doi.org/10.2478/aoas-2018-0022
- Early Feeding Regime of Waste Milk, Milk, and Milk Replacer for Calves Has Different Effects on Rumen Fermentation and the Bacterial Community vol.9, pp.7, 2017, https://doi.org/10.3390/ani9070443
- Jersey steer ruminal papillae histology and nutrigenomics with diet changes vol.103, pp.6, 2017, https://doi.org/10.1111/jpn.13189
- Effect of feeding forage or concentrate starter diets in early life on life-time growth, carcass traits and meat quality of Wagyu × Friesian cattle vol.60, pp.15, 2020, https://doi.org/10.1071/an19486
- Effect of housing improvement and other factors on the growth of heifer calves on Kenyan smallholder dairy farms vol.53, pp.1, 2017, https://doi.org/10.1007/s11250-020-02548-4
- Main regulatory factors of marbling level in beef cattle vol.14, pp.None, 2017, https://doi.org/10.1016/j.vas.2021.100219