참고문헌
- Korte J, Frohlich T, Kohn M, et al. 2D DIGE analysis of the bursa of Fabricius reveals characteristic proteome profiles for different stages of chicken B-cell development. Proteomics 2013;13:119-33. https://doi.org/10.1002/pmic.201200177
- Glick B, Chang TS, Jaap RG. The bursa of fabricius and antibody production. Poult Sci 1956;35:224-5. https://doi.org/10.3382/ps.0350224
- Yin T-B, Liu X-Y. Poultry immunology. Beijing, China: China Agriculture Science and Technique Press; 1999.
- Mustonen L, Alinikula J, Lassila O, Nera KP. Bursa of Fabricius. Encyclopedia of Life Science. Hoboken, NJ: Wiley; 2010.
- Ratcliffe MJ. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev Com Immunol 2006;30:101-18. https://doi.org/10.1016/j.dci.2005.06.018
- Bartel DP, Chen C-Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004;5:396-400. https://doi.org/10.1038/nrg1328
- Schickel R, Boyerinas B, Park S, Peter M. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008;27:5959-74. https://doi.org/10.1038/onc.2008.274
- Hicks JA, Tembhurne PA, Liu H-C. Identification of microRNA in the developing chick immune organs. Immunogenetics 2009;61:231-40. https://doi.org/10.1007/s00251-009-0355-1
- Trakooljul N, Hicks J, Liu HC. Identification of target genes and pathways associated with chicken microRNA miR-143. Anim Genet 2010; 41:357-64.
- Chen C-Z, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004;303:83-6. https://doi.org/10.1126/science.1091903
- Li Z-J, Zhang Y-P, Li Y, et al. Distinct expression pattern of miRNAs in Marek's disease virus infected-chicken splenic tumors and nontumorous spleen tissues. Res Vet Sci 2014;97:156-61. https://doi.org/10.1016/j.rvsc.2014.04.003
- Wang Y-S, Ouyang W, Pan Q-X, et al. Overexpression of microRNA gga-miR-21 in chicken fibroblasts suppresses replication of infectious bursal disease virus through inhibiting VP1 translation. Antiviral Res 2013;100:196-201. https://doi.org/10.1016/j.antiviral.2013.08.001
- Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007;316:608-11. https://doi.org/10.1126/science.1139253
- Dahlberg JE, Lund E. Micromanagement during the innate immune response. Sci Signal 2007;2007:pe25-pe.
- Dinh H, Hong YH, Lillehoj HS. Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility. Vet Immunol Immunopathol 2014;159:74-82. https://doi.org/10.1016/j.vetimm.2014.02.003
- Tian F, Luo J, Zhang H, Chang S, Song J. MiRNA expression signatures induced by Marek's disease virus infection in chickens. Genomics 2012;99:152-9. https://doi.org/10.1016/j.ygeno.2011.11.004
- Wen M, Shen Y, Shi S, Tang T. miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 2012;13:140. https://doi.org/10.1186/1471-2105-13-140
- Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012;40:37-52. https://doi.org/10.1093/nar/gkr688
- Zhou L, Chen J, Li Z, et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27. 3 associate with clear cell renal cell carcinoma. PLoS ONE 2010;5:e15224. https://doi.org/10.1371/journal.pone.0015224
- Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010;26:136-8. https://doi.org/10.1093/bioinformatics/btp612
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the
$2^{-{\Delta}{\Delta}CT}$ method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262 - Green SB, Salkind NJ. Using SPSS for Windows and Macintosh: Analyzing and understanding data. Upper Saddle River, NJ: Prentice Hall Press; 2010.
- Li Y, Wang X, Yu J, et al. MiR-122 targets the vanin 1 gene to regulate its expression in chickens. Poult Sci 2016;95:1145-50. https://doi.org/10.3382/ps/pew039
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
- Yu D-B, Jiang B-C, Jing G, et al. Identification of novel and differentially expressed microRNAs in the ovaries of laying and non-laying ducks. J Integr Agric 2013;12:136-46. https://doi.org/10.1016/S2095-3119(13)60214-2
- Zhang L, Nie Q, Su Y, et al. MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene 2013;519:77-81. https://doi.org/10.1016/j.gene.2013.01.043
- Gu L, Xu T, Huang W, et al. Identification and profiling of microRNAs in the embryonic breast muscle of pekin duck. PloS one 2014;9:e86150. https://doi.org/10.1371/journal.pone.0086150
- Cong L-X, Su J-Z, Xing S-Y, Zhao Z-H, Zhang J-Y. Detection of the expression and comparative study of miRNA-17a-* in H5N1 infected and uninfected SPF ducks. Heilongjiang Anim Sci Vet Med 2012;21:005.
- Li Z, Zhang J, Su J, et al. MicroRNAs in the immune organs of chickens and ducks indicate divergence of immunity against H5N1 avian influenza. FEBS Lett 2015;589:419-25. https://doi.org/10.1016/j.febslet.2014.12.019
- Smith KM, Guerau-de-Arellano M, Costinean S, et al. miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol 2012;189:1567-76. https://doi.org/10.4049/jimmunol.1103171
- Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. Nat Immunol 2008;9:839-45. https://doi.org/10.1038/ni.f.209
-
Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-
${\kappa}B$ -dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Nat Acad Sci 2006;103: 12481-6. https://doi.org/10.1073/pnas.0605298103 - Lynn DJ, Winsor GL, Chan C, et al. InnateDB: facilitating systemslevel analyses of the mammalian innate immune response. Mol Syst Biol 2008;4.
- Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004;5:730-7. https://doi.org/10.1038/ni1087
- Baeuerle PA, Baichwal VR. NF-kB as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol 1997;65:111-38.
- Honda K, Yanai H, Negishi H, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005;434:772-7. https://doi.org/10.1038/nature03464
- Huang Y, Li Y, Burt DW, et al. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 2013;45:776-83. https://doi.org/10.1038/ng.2657
- Georges SA, Biery MC, Kim S-Y, et al. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res 2008;68:10105-12. https://doi.org/10.1158/0008-5472.CAN-08-1846
- Liu G, Friggeri A, Yang Y, et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Nat Acad Sci 2009;106:15819-24. https://doi.org/10.1073/pnas.0901216106
- Dong P, Kaneuchi M, Watari H, et al. MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer 2011;10:1. https://doi.org/10.1186/1476-4598-10-1
- Kumar R, Singh GK, Chauhan RS. Development of bursa of fabricius in relations to humoral immunity in chicken embryo. Indian J Anim Sci 2004;74:838-40.
- Singh S, Singh I, Singh G, Gangwar C, Kumar P. Postnatal development of bursa of Fabricius in relation to humoral Immunity in Keets. J Immunol Immunopathol 2011;13:42-5.
- Bangham CR. HTLV-1 infections. J Clin Pathol 2000;53:581-6. https://doi.org/10.1136/jcp.53.8.581
- Vojtek AB, Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem 1998;273:19925-8. https://doi.org/10.1074/jbc.273.32.19925
- Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002;12:9-18. https://doi.org/10.1038/sj.cr.7290105
- Zhao J-H, Reiske H, Guan J-L. Regulation of the cell cycle by focal adhesion kinase. J Cell Biol 1998;143:1997-2008. https://doi.org/10.1083/jcb.143.7.1997
- Lukashev ME, Werb Z. ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 1998;8:437-41. https://doi.org/10.1016/S0962-8924(98)01362-2
- Lau KS, Partridge EA, Grigorian A, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007;129:123-34. https://doi.org/10.1016/j.cell.2007.01.049
- Luna-Acosta JL, Alba-Betancourt C, Martinez-Moreno CG, et al. Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius. Gen Comp Endocrinol 2015;224:148-59. https://doi.org/10.1016/j.ygcen.2015.07.010
- Lawson WE, Crossno PF, Polosukhin VV, et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol 2008;294:L1119-L26. https://doi.org/10.1152/ajplung.00382.2007
- Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 2000;22:442-51. https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q
- Dienz O, Eaton SM, Bond JP, et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med 2009;206:69-78. https://doi.org/10.1084/jem.20081571
- Ip YK, Chew SF. Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 2010;1:134.
피인용 문헌
- Identification of differentially expressed microRNAs during preadipocyte differentiation in Chinese crested duck vol.661, pp.None, 2017, https://doi.org/10.1016/j.gene.2018.03.085