DOI QR코드

DOI QR Code

Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Fourier Transform Rheology

대진폭 전단유동장에서 잔탄검 농후계의 비선형 점탄성 거동 연구: 푸리에 변환 레올러지

  • Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kuk, Hoa-Youn (OE Development Team 3, NEXEN Tire R&D Center) ;
  • Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
  • 안혜진 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 국화윤 (넥센타이어 중앙연구소 OE개발3팀) ;
  • 송기원 (부산대학교 공과대학 유기소재시스템공학과)
  • Received : 2017.09.16
  • Accepted : 2017.10.17
  • Published : 2017.10.31

Abstract

The present study has been performed to quantitatively characterize the nonlinear rheological behavior of concentrated xanthan gum systems in large amplitude oscillatory shear (LAOS) flow fields by means of the methodology of Fourier transform (FT) rheology. Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous xanthan gum solutions with different concentrations has been experimentally investigated in LAOS flow conditions with a various combination of several fixed strain amplitudes and constant angular frequencies. The nonlinear viscoelastic functions were derived from the Fourier spectra of stress responses, and then the fundamental and higher harmonic contributions were calculated from discrete Fourier transform (DFT). The nonlinear viscoelastic behavior was interpreted by displaying 3D plots, and then the effects of strain amplitude and angular frequency on the nonlinear behavior were discussed in depth. A comparison of the experimentally obtained stress response with the stress waves calculated from higher harmonic nonlinear viscoelastic functions was made to clarify the role of higher harmonic contributions. The main findings obtained from this study are summarized as follows : (1) When the strain amplitude becomes larger than a critical value of 50%, the higher nonlinear viscoelastic functions must be considered to explain the nonlinear viscoelastic behavior. However, the fundamental stress amplitude is dominantly larger than those of higher harmonics. (2) As the strain amplitude is increased, the fundamental stress amplitude is steeply increased within the linear viscoelastic region beyond which followed by an approximately constant magnitude at large deformations. This strain dependence may be explained as a distinction between linear and nonlinear viscoelastic behavior. (3) When the strain amplitude exceeds a critical value of 50%, the higher stress amplitudes are sharply increased with an increase in strain amplitude at large deformations, indicating that the higher stress harmonics exert an influence on the nonlinear viscoelastic behavior. (4) In order to interpret the complicated nonlinear viscoelastic behavior occurring at large deformations, the fundamental terms as well as the higher harmonics of phase angles defined at the odd terms should be deliberated for a quantitatively advanced analysis. (5) An overall shape of the experimentally obtained stress response is strongly affected by the higher harmonic contributions. As the angular frequency is decreased, a more distorted and a sharper stress waveform is observed at LAOS deformations. (6) A distorted stress waveform is qualitatively inclined to the left side with respect to a sinusoidal curve. In order to explain the nonlinear viscoelastic behavior of concentrated xanthan gum systems in LAOS flow fields, the nonlinear viscoelastic functions from the first to at least seventh harmonics should be considered for an accurate analysis.

Keywords

References

  1. K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65. https://doi.org/10.1016/S0377-0257(02)00141-6
  2. X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274. https://doi.org/10.1122/1.3193713
  3. S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. https://doi.org/10.1122/1.3662962
  4. P. R. de Souza Mendes, R. L. Thompson, A. A. Alicke, and R. T. Leite, "The Quasilinear Large-Amplitude Viscoelastic Regime and Its Significance in the Rheological Characterization of Soft Matter", J. Rheol., 2014, 58, 537-561. https://doi.org/10.1122/1.4865695
  5. M. R. B. Mermet-Guyennet, J. G. de Castro, M. Habibi, N. Martel, M. M. Denn, and D. Bonn, "LAOS : The Strain Softening/Strain Hardening Paradox", J. Rheol., 2015, 59, 21-32. https://doi.org/10.1122/1.4902000
  6. K. S. Cho, J. W. Kim, J. E. Bae, J. H. Youk, H. J. Jeon, and K. W. Song, "Effect of Temporary Network Structure on Linear and Nonlinear Viscoelasticity of Polymer Solutions", Korea-Aust. Rheol. J., 2015, 27, 151-161. https://doi.org/10.1007/s13367-015-0015-y
  7. D. R. Gamota, A. S. Wineman, and F. E. Filisko, "Fourier Transform Analysis : Nonlinear Dynamic Response of an Electrorheological Material", J. Rheol., 1993, 37, 919-933. https://doi.org/10.1122/1.550403
  8. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. https://doi.org/10.1122/1.1895801
  9. S. Hofl, F. Kremer, H. W. Spiess, M. Wilhelm, and S. Kahle, "Effect of Large Amplitude Oscillatory Shear (LAOS) on the Dielectric Response of 1,4-cis-polyisoprene", Polymer, 2006, 47, 7282-7288. https://doi.org/10.1016/j.polymer.2006.03.116
  10. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81.
  11. D. R. Gamota and F. E. Filisko, "Dynamic Mechanical Studies of Electrorheological Materials : Moderate Frequencies", J. Rheol., 1991, 35, 399-425. https://doi.org/10.1122/1.550221
  12. K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183.
  13. K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63. https://doi.org/10.1122/1.3258278
  14. G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166. https://doi.org/10.12772/TSE.2015.52.159
  15. H. J. Ahn, G. S. Chang, and K. W. Song, "A Time-Strain Separable K-BKZ Constitutive Equation to Describe the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2017, 54, 230-245.
  16. H. J. Ahn, G. S. Chang, and K. W. Song, "The Doi-Edwards Constitutive Equation to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2017, 54, 253-267.
  17. T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc. Rheol., 1975, 19, 595-615. https://doi.org/10.1122/1.549387
  18. W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer I. Small Amplitude Oscillatory Shearing", Rheol. Acta, 1982, 21, 184-192. https://doi.org/10.1007/BF01736417
  19. W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer II. Large Amplitude Oscillatory Shearing-Fundamental Response", Rheol. Acta, 1982, 21, 193-200. https://doi.org/10.1007/BF01736418
  20. W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer III. Large Amplitude Oscillatory Shearing-Harmonic Analysis", Rheol. Acta, 1984, 23, 90-97. https://doi.org/10.1007/BF01333880
  21. A. J. Giacomin and J. M. Dealy in "Large-Amplitude Oscillatory Shear Techniques in Rheological Measurements" (A. A. Collyer Ed.), Chap. 4, Chapman & Hall, London, 1993.
  22. K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (I)-Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation", J. Kor. Fiber Soc., 1996, 33, 1083-1093.
  23. W. M. Davis and C. W. Macosko, "Nonlinear Dynamic Mechanical Moduli for Polycarbonate and PMMA", J. Rheol., 1978, 22, 53-71. https://doi.org/10.1122/1.549500
  24. S. Onogi, T. Masuda, and T. Matsumoto, "Non-linear Behavior of Viscoelastic Materials. I. Disperse Systems of Polystyrene Solution and Carbon Black", Trans. Soc. Rheol., 1970, 14, 275-294. https://doi.org/10.1122/1.549190
  25. T. Matsumoto, Y. Segawa, Y. Warashina, and S. Onogi, "Nonlinear Behavior of Viscoelastic Materials. II. The Method of Analysis and Temperature Dependence of Nonlinear Viscoelastic Functions", Trans. Soc. Rheol., 1973, 17, 47-62. https://doi.org/10.1122/1.549319
  26. W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334. https://doi.org/10.1122/1.549049
  27. J. Harris and K. Bogie, "The Experimental Analysis of Nonlinear Waves in Mechanical Systems", Rheol. Acta, 1967, 6, 3-5. https://doi.org/10.1007/BF01968375
  28. J. S. Dodge and I. M. Krieger, "Oscillatory Shear of Nonlinear Fluids I. Preliminary Investigation", Trans. Soc. Rheol., 1971, 15, 589-601. https://doi.org/10.1122/1.549236
  29. H. Komatsu, T. Mitsui, and S. Onogi, "Nonlinear Viscoelastic Properties of Semisolid Emulsions", Trans. Soc. Rheol., 1973, 17, 351-364. https://doi.org/10.1122/1.549285
  30. I. M. Krieger and T. F. Niu, "A Rheometer for Oscillatory Studies of Nonlinear Fluids", Rheol. Acta, 1973, 12, 567-571. https://doi.org/10.1007/BF01525599
  31. B. Debbaut and H. Burhin, "Large Amplitude Oscillatory Shear and Fourier-Transform Rheology for a High-Density Polyethylene : Experiments and Numerical Simulation", J. Rheol., 2002, 46, 1155-1176. https://doi.org/10.1122/1.1495493
  32. G. S. Chang, H. J. Ahn, and K. W. Song, "Discrete Fourier Transform Analysis to Characterize the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2016, 53, 317-327. https://doi.org/10.12772/TSE.2016.53.317
  33. M. Langela, U. Wiesner, H. W. Spiess, and M. Wilhelm, "Microphase Reorientation in Block Copolymer Melts as Detected via FT Rheology and 2D SAXS", Macromolecules, 2002, 35, 3198-3204. https://doi.org/10.1021/ma0115693
  34. K. Tan, S. Cheng, L. Juge, and L. E. Bilston, "Characterizing Soft Tissues under Large Amplitude Oscillatory Shear and Combined Loading", J. Biomech., 2013, 46, 1060-1066. https://doi.org/10.1016/j.jbiomech.2013.01.028
  35. N. Phan-Thien, M. Newberry, and R. I. Tanner, "Non-linear Oscillatory Flow of a Soft Solid-like Viscoelastic Material", J. Non-Newt. Fluid Mech., 2000, 92, 67-80. https://doi.org/10.1016/S0377-0257(99)00110-X
  36. H. G. Sim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of Complex Fluids Investigated by a Network Model : A Guideline for Classification", J. Non-Newt. Fluid Mech., 2003, 112, 237-250. https://doi.org/10.1016/S0377-0257(03)00102-2
  37. M. Wilhelm, D. Maring, and H. W. Spiess, "Fourier-Transform Rheology", Rheol. Acta, 1998, 37, 399-405. https://doi.org/10.1007/s003970050126
  38. M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356. https://doi.org/10.1007/s003970050185
  39. M. Wilhelm, P. Reinheimer, M. Ortseifer, T. Neidhofer, and H. W. Spiess, "The Crossover between Linear and Non-linear Mechanical Behaviour in Polymer Solutions as Detected by Fourier-Transform Rheology", Rheol. Acta, 2000, 39, 241-246. https://doi.org/10.1007/s003970000084
  40. M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mater. Eng., 2002, 287, 83-105. https://doi.org/10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
  41. S. Kallus, N. Willenbacher, S. Kirsch, D. Distler, T. Neidhofer, M. Wilhelm, and H. W. Spiess, "Characterization of Polymer Dispersions by Fourier-Transform Rheology", Rheol. Acta, 2001, 40, 552-559. https://doi.org/10.1007/s003970100184
  42. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of PEO-PPOPEO Triblock Copolymer Solutions", Rheol. Acta, 2006, 45, 239-249. https://doi.org/10.1007/s00397-005-0014-x
  43. C. Klein, P. Venema, L. Sagis, and E. van der Linden, "Rheological Discrimination and Characterization of Carrageenans and Starches by Fourier Transform-Rheology in the Non-Linear Viscous Regime", J. Non-Newt. Fluid Mech., 2008, 151, 145-150. https://doi.org/10.1016/j.jnnfm.2008.01.001
  44. C. H. Bi, D. Li, L. J. Wang, Y. Wang, and B. Adhikari, "Characterization of Non-Linear Rheological Behavior of SPIFG Dispersions Using LAOS Tests and FT Rheology", Carbohydrate Polymers, 2013, 92, 1151-1158. https://doi.org/10.1016/j.carbpol.2012.10.067
  45. F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, "Xanthan Gum : Production, Recovery, and Properties", Biotechnol. Adv., 2000, 18, 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
  46. E. Pelletier, C. Viebke, J. Meadows, and P. A. Williams, "A Rheological Study of the Order-Disorder Conformational Transition of Xanthan Gum", Biopolymers, 2001, 59, 339-346. https://doi.org/10.1002/1097-0282(20011015)59:5<339::AID-BIP1031>3.0.CO;2-A
  47. M. Marcotte, A. R. Taherian-Hoshahili, and H. S. Ramaswamy, "Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature", Food Res. Int., 2001, 34, 695-703. https://doi.org/10.1016/S0963-9969(01)00091-6
  48. J. Ahmed and H. S. Ramaswamy, "Effect of High-Hydrostatic Pressure and Concentration on Rheological Characteristics of Xanthan Gum", Food Hydrocolloids, 2004, 18, 367-373. https://doi.org/10.1016/S0268-005X(03)00123-1
  49. B. Urlacher and O. Noble in "Thickening and Gelling Agents for Food-Xanthan" (A. Imeson Ed.), Chapman & Hall, London, 1997, pp.284-311.
  50. J. N. BeMiller and K. C. Huber in "Food Chemistry-Carbohydrates" (S. Damodaran, K. L. Parkin, and O. R. Fennema Eds.), CRC Press, Boca Raton, 2008, pp.83-154.
  51. P. J. Whitcomb and C. W. Macosko, "Rheology of Xanthan Gum", J. Rheol., 1978, 22, 493-505. https://doi.org/10.1122/1.549485
  52. W. E. Rochefort and S. Middleman, "Rheology of Xanthan Gum : Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments", J. Rheol., 1987, 31, 337-369. https://doi.org/10.1122/1.549953
  53. K. C. Tam and C. Tiu, "Steady and Dynamic Shear Properties of Aqueous Polymer Solutions", J. Rheol., 1989, 33, 257-280. https://doi.org/10.1122/1.550015
  54. M. Milas, M. Rinaudo, M. Knipper, and J. L. Schuppiser, "Flow and Viscoelastic Properties of Xanthan Gum Solutions", Macromolecules, 1990, 23, 2506-2511. https://doi.org/10.1021/ma00211a018
  55. A. B. Rodd, J. J. Cooper-White, D. E. Dunstan, and D. V. Boger, "Gel Point Studies for Chemically-Modified Biopolymer Networks Using Small Amplitude Oscillatory Rheometry", Polymer, 2001, 42, 185-198. https://doi.org/10.1016/S0032-3861(00)00311-6
  56. N. B. Wyatt and M. W. Liberatore, "Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum", J. Appl. Polym. Sci., 2009, 114, 4076-4084. https://doi.org/10.1002/app.31093
  57. E. Choppe, F. Puaud, T. Nicolai, and L. Benyahia, "Rheology of Xanthan Solutions as a Function of Temperature, Concentration and Ionic Strength", Carbohydrate Polymers, 2010, 82, 1228-1235. https://doi.org/10.1016/j.carbpol.2010.06.056
  58. L. Xu, G. Xu, T. Liu, Y. Chen, and H. Gong, "The Comparison of Rheological Properties of Aqueous Welan Gum and Xanthan Gum Solutions", Carbohydrate Polymers, 2013, 92, 516-522. https://doi.org/10.1016/j.carbpol.2012.09.082
  59. A. Giboreau, G. Cuvelier, and B. Launay, "Rheological Behavior of Three Biopolymer/Water Systems with Emphasis on Yield Stress and Viscoelastic Properties", J. Texture Stud., 1994, 25, 119-137. https://doi.org/10.1111/j.1745-4603.1994.tb01321.x
  60. R. Pal, "Oscillatory, Creep and Steady Flow Behavior of Xanthan-Thickened Oil-in-Water Emulsions", AIChE J., 1995, 41, 783-794. https://doi.org/10.1002/aic.690410405
  61. L. Ma and G. V. Barbosa-Canovas, "Viscoelastic Properties of Xanthan Gels Interacting with Cations", J. Food Sci., 1997, 62, 1124-1128. https://doi.org/10.1111/j.1365-2621.1997.tb12227.x
  62. R. K. Richardson and S. B. Ross-Murphy, "Nonlinear Viscoelasticity of Polysaccharide Solutions. 2 : Xanthan Polysaccharide Solutions", Int. J. Biol. Macromol., 1987, 9, 257-264. https://doi.org/10.1016/0141-8130(87)90063-8
  63. T. Lim, J. T. Uhl, and R. K. Prudhomme, "Rheology of Self-Associating Concentrated Xanthan Solutions", J. Rheol., 1984, 28, 367-379. https://doi.org/10.1122/1.549757
  64. M. M. Santore and R. K. Prudhomme, "Rheology of a Xanthan Broth at Low Stresses and Strains", Carbohydr. Polym., 1990, 12, 329-335. https://doi.org/10.1016/0144-8617(90)90074-3
  65. K. W. Song, Y. S. Kim, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior", Fiber. Polym., 2006, 7, 129-138. https://doi.org/10.1007/BF02908257
  66. J. S. Lee and K. W. Song, "Time-Dependent Rheology of Concentrated Xanthan Gum Solutions", Trans. Nordic Rheol. Soc., 2011, 19, 329-333.
  67. J. S. Lee, Y. S. Kim, and K. W. Song, "Transient Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Start-Up Shear Flow Fields : An Experimental Study Using a Strain-Controlled Rheometer", Korea-Aust. Rheol. J., 2015, 27, 227-239. https://doi.org/10.1007/s13367-015-0023-y
  68. J. S. Lee and K. W. Song, "Time-Dependent Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Interrupted Shear and Step-Incremental/Reductional Shear Flow Fields", Korea-Aust. Rheol. J., 2015, 27, 297-307. https://doi.org/10.1007/s13367-015-0029-5
  69. J. A. Carmona, P. Ramirez, N. Calero, and J. Munoz, "Large Amplitude Oscillatory Shear of Xanthan Gum Solutions : Effect of Sodium Chloride (NaCl) Concentration", J. Food Eng., 2014, 126, 165-172. https://doi.org/10.1016/j.jfoodeng.2013.11.009
  70. H. J. Ahn, H. Y. Kuk, J. S. Lee, and K. W. Song, "Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Stress Waveform and Lissajous Pattern Analysis", Text. Sci. Eng., 2016, 53, 328-339. https://doi.org/10.12772/TSE.2016.53.328
  71. A. E. Green and R. S. Rivlin, "The Mechanics of Non-Linear Materials with Memory (Part I)", Arch. Rat. Mech. Anal., 1957, 1, 1-21. https://doi.org/10.1007/BF00297992
  72. A. E. Green, R. S. Rivlin, and A. J. M. Spencer, "The Mechanics of Non-Linear Materials with Memory (Part II)", Arch. Rat. Mech. Anal., 1959, 3, 82-90. https://doi.org/10.1007/BF00284166
  73. A. E. Green and R. S. Rivlin, "The Mechanics of Non-Linear Materials with Memory (Part III)", Arch. Rat. Mech. Anal., 1959/60, 4, 387-404.
  74. W. Ramirez, "The FFT Fundamentals and Concepts", Prentice-Hall, New Jersey, 1985.
  75. R. Lapasin and S. Pricl, "Rheology of Industrial Polysaccharides : Theory and Applications", Aspen Publishers, Gaithersburg, MD, 1999.
  76. B. T. Stokke, B. E. Christensen, and O. Smidsrod in "Polysaccharides : Structural Diversity and Functional Versatility- Macromolecular Properties of Xanthan" (S. Dumitriu Ed.), Marcel Dekker, New York, 1998, pp.433-472.
  77. B. Katzbauer, "Properties and Applications of Xanthan Gum", Polym. Degrad. Stabil., 1998, 59, 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8
  78. G. Holzwarth and E. B. Prestridge, "Multistranded Helix in Xanthan Polysaccharide", Science, 1977, 197, 757-759. https://doi.org/10.1126/science.887918
  79. T. A. Camesano and K. J. Wilkinson, "Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy", Biomacromolecules, 2001, 2, 1184-1191. https://doi.org/10.1021/bm015555g
  80. K. Ogawa and T. Yui in "Polysaccharides : Structural Diversity and Functional Versatility-X-ray Diffraction Study of Polysaccharides" (S. Dumitriu Ed.), Marcel Dekker, New York, 1998, pp.101-130.
  81. K. Born, V. Langendorff, and P. Boulenguer, "Biopolymers", Vol. 5, Wiley-Interscience, New York, 2001.
  82. M. A. Zirnsak, D. V. Boger, and V. Tirtaatmadja, "Steady Shear and Dynamic Rheological Properties of Xanthan Gum Solutions in Viscous Solvents", J. Rheol., 1999, 43, 627-650. https://doi.org/10.1122/1.551007
  83. M. S. Chun, C. Kim, and D. E. Lee, "Conformation and Translational Diffusion of a Xanthan Polyelectrolyte Chain : Brownian Dynamics Simulation and Single Molecule Tracking", Phys. Rev. E., 2009, 79, 051919. https://doi.org/10.1103/PhysRevE.79.051919
  84. M. S. Chun and M. J. Ko, "Rheological Correlations of Relaxation Time for Finite Concentrated Semiflexible Polyelectrolytes in Solvents", J. Kor. Phys. Soc., 2012, 61, 1108-1113. https://doi.org/10.3938/jkps.61.1108
  85. M. S. Chun and O. O. Park, "On the Intrinsic Viscosity of Anionic and Nonionic Rodlike Polysaccharide Solutions", Macromol. Chem. Phys., 1994, 195, 701-711. https://doi.org/10.1002/macp.1994.021950227
  86. G. S. Chang, J. S. Koo, and K. W. Song, "Wall Slip of Vaseline in Steady Shear Rheometry", Korea-Aust. Rheol. J., 2003, 15, 55-61.
  87. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Nonlinear Response of Complex Fluids under LAOS (Large Amplitude Oscillatory Shear) Flow", Korea-Aust. Rheol. J., 2003, 15, 97-105.
  88. T. Neidhofer, M. Wilhelm, and B. Debbaut, "Fourier-Transfrom Rheology Experiments and Finite-Element Simulations on Linear Polystyrene Solutions", J. Rheol., 2003, 47, 1351-1371. https://doi.org/10.1122/1.1608954
  89. J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990.
  90. A. J. Giacomin and J. M. Dealy in "Techniques in Rheological Measurement : Large-Amplitude Oscillatory Shear" (A. A. Collyer Ed.), Chapman & Hall, London, 1993, pp.99-121.
  91. H. Kim, K. Hyun, D. J. Kim, and K. S. Cho, "Comparison of Interpretation Methods for Large Amplitude Oscillatory Shear Response", Korea-Aust. Rheol. J., 2006, 18, 91-98.
  92. R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, "New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear", J. Rheol., 2008, 52, 1427-1458. https://doi.org/10.1122/1.2970095
  93. W. Yu, P. Wang, and C. Zhou, "General Stress Decomposition in Nonlinear Oscillatory Shear Flow", J. Rheol., 2009, 53, 215-238. https://doi.org/10.1122/1.3037267
  94. C. O. Klein, H. W. Spiess, A. Calin, C. Balan, and M. Wilhelm, "Separation of the Nonlinear Oscillatory Response into a Superposition of Linear, Strain Hardening, Strain Softening, and Wall Slip Response", Macromolecules, 2007, 40, 4250-4259. https://doi.org/10.1021/ma062441u