References
- K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65. https://doi.org/10.1016/S0377-0257(02)00141-6
- X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274. https://doi.org/10.1122/1.3193713
- S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. https://doi.org/10.1122/1.3662962
- P. R. de Souza Mendes, R. L. Thompson, A. A. Alicke, and R. T. Leite, "The Quasilinear Large-Amplitude Viscoelastic Regime and Its Significance in the Rheological Characterization of Soft Matter", J. Rheol., 2014, 58, 537-561. https://doi.org/10.1122/1.4865695
- M. R. B. Mermet-Guyennet, J. G. de Castro, M. Habibi, N. Martel, M. M. Denn, and D. Bonn, "LAOS : The Strain Softening/Strain Hardening Paradox", J. Rheol., 2015, 59, 21-32. https://doi.org/10.1122/1.4902000
- K. S. Cho, J. W. Kim, J. E. Bae, J. H. Youk, H. J. Jeon, and K. W. Song, "Effect of Temporary Network Structure on Linear and Nonlinear Viscoelasticity of Polymer Solutions", Korea-Aust. Rheol. J., 2015, 27, 151-161. https://doi.org/10.1007/s13367-015-0015-y
- D. R. Gamota, A. S. Wineman, and F. E. Filisko, "Fourier Transform Analysis : Nonlinear Dynamic Response of an Electrorheological Material", J. Rheol., 1993, 37, 919-933. https://doi.org/10.1122/1.550403
- K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. https://doi.org/10.1122/1.1895801
- S. Hofl, F. Kremer, H. W. Spiess, M. Wilhelm, and S. Kahle, "Effect of Large Amplitude Oscillatory Shear (LAOS) on the Dielectric Response of 1,4-cis-polyisoprene", Polymer, 2006, 47, 7282-7288. https://doi.org/10.1016/j.polymer.2006.03.116
- K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81.
- D. R. Gamota and F. E. Filisko, "Dynamic Mechanical Studies of Electrorheological Materials : Moderate Frequencies", J. Rheol., 1991, 35, 399-425. https://doi.org/10.1122/1.550221
- K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183.
- K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63. https://doi.org/10.1122/1.3258278
- G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166. https://doi.org/10.12772/TSE.2015.52.159
- H. J. Ahn, G. S. Chang, and K. W. Song, "A Time-Strain Separable K-BKZ Constitutive Equation to Describe the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2017, 54, 230-245.
- H. J. Ahn, G. S. Chang, and K. W. Song, "The Doi-Edwards Constitutive Equation to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2017, 54, 253-267.
- T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc. Rheol., 1975, 19, 595-615. https://doi.org/10.1122/1.549387
- W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer I. Small Amplitude Oscillatory Shearing", Rheol. Acta, 1982, 21, 184-192. https://doi.org/10.1007/BF01736417
- W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer II. Large Amplitude Oscillatory Shearing-Fundamental Response", Rheol. Acta, 1982, 21, 193-200. https://doi.org/10.1007/BF01736418
- W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer III. Large Amplitude Oscillatory Shearing-Harmonic Analysis", Rheol. Acta, 1984, 23, 90-97. https://doi.org/10.1007/BF01333880
- A. J. Giacomin and J. M. Dealy in "Large-Amplitude Oscillatory Shear Techniques in Rheological Measurements" (A. A. Collyer Ed.), Chap. 4, Chapman & Hall, London, 1993.
- K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (I)-Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation", J. Kor. Fiber Soc., 1996, 33, 1083-1093.
- W. M. Davis and C. W. Macosko, "Nonlinear Dynamic Mechanical Moduli for Polycarbonate and PMMA", J. Rheol., 1978, 22, 53-71. https://doi.org/10.1122/1.549500
- S. Onogi, T. Masuda, and T. Matsumoto, "Non-linear Behavior of Viscoelastic Materials. I. Disperse Systems of Polystyrene Solution and Carbon Black", Trans. Soc. Rheol., 1970, 14, 275-294. https://doi.org/10.1122/1.549190
- T. Matsumoto, Y. Segawa, Y. Warashina, and S. Onogi, "Nonlinear Behavior of Viscoelastic Materials. II. The Method of Analysis and Temperature Dependence of Nonlinear Viscoelastic Functions", Trans. Soc. Rheol., 1973, 17, 47-62. https://doi.org/10.1122/1.549319
- W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334. https://doi.org/10.1122/1.549049
- J. Harris and K. Bogie, "The Experimental Analysis of Nonlinear Waves in Mechanical Systems", Rheol. Acta, 1967, 6, 3-5. https://doi.org/10.1007/BF01968375
- J. S. Dodge and I. M. Krieger, "Oscillatory Shear of Nonlinear Fluids I. Preliminary Investigation", Trans. Soc. Rheol., 1971, 15, 589-601. https://doi.org/10.1122/1.549236
- H. Komatsu, T. Mitsui, and S. Onogi, "Nonlinear Viscoelastic Properties of Semisolid Emulsions", Trans. Soc. Rheol., 1973, 17, 351-364. https://doi.org/10.1122/1.549285
- I. M. Krieger and T. F. Niu, "A Rheometer for Oscillatory Studies of Nonlinear Fluids", Rheol. Acta, 1973, 12, 567-571. https://doi.org/10.1007/BF01525599
- B. Debbaut and H. Burhin, "Large Amplitude Oscillatory Shear and Fourier-Transform Rheology for a High-Density Polyethylene : Experiments and Numerical Simulation", J. Rheol., 2002, 46, 1155-1176. https://doi.org/10.1122/1.1495493
- G. S. Chang, H. J. Ahn, and K. W. Song, "Discrete Fourier Transform Analysis to Characterize the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2016, 53, 317-327. https://doi.org/10.12772/TSE.2016.53.317
- M. Langela, U. Wiesner, H. W. Spiess, and M. Wilhelm, "Microphase Reorientation in Block Copolymer Melts as Detected via FT Rheology and 2D SAXS", Macromolecules, 2002, 35, 3198-3204. https://doi.org/10.1021/ma0115693
- K. Tan, S. Cheng, L. Juge, and L. E. Bilston, "Characterizing Soft Tissues under Large Amplitude Oscillatory Shear and Combined Loading", J. Biomech., 2013, 46, 1060-1066. https://doi.org/10.1016/j.jbiomech.2013.01.028
- N. Phan-Thien, M. Newberry, and R. I. Tanner, "Non-linear Oscillatory Flow of a Soft Solid-like Viscoelastic Material", J. Non-Newt. Fluid Mech., 2000, 92, 67-80. https://doi.org/10.1016/S0377-0257(99)00110-X
- H. G. Sim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of Complex Fluids Investigated by a Network Model : A Guideline for Classification", J. Non-Newt. Fluid Mech., 2003, 112, 237-250. https://doi.org/10.1016/S0377-0257(03)00102-2
- M. Wilhelm, D. Maring, and H. W. Spiess, "Fourier-Transform Rheology", Rheol. Acta, 1998, 37, 399-405. https://doi.org/10.1007/s003970050126
- M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356. https://doi.org/10.1007/s003970050185
- M. Wilhelm, P. Reinheimer, M. Ortseifer, T. Neidhofer, and H. W. Spiess, "The Crossover between Linear and Non-linear Mechanical Behaviour in Polymer Solutions as Detected by Fourier-Transform Rheology", Rheol. Acta, 2000, 39, 241-246. https://doi.org/10.1007/s003970000084
- M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mater. Eng., 2002, 287, 83-105. https://doi.org/10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
- S. Kallus, N. Willenbacher, S. Kirsch, D. Distler, T. Neidhofer, M. Wilhelm, and H. W. Spiess, "Characterization of Polymer Dispersions by Fourier-Transform Rheology", Rheol. Acta, 2001, 40, 552-559. https://doi.org/10.1007/s003970100184
- K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of PEO-PPOPEO Triblock Copolymer Solutions", Rheol. Acta, 2006, 45, 239-249. https://doi.org/10.1007/s00397-005-0014-x
- C. Klein, P. Venema, L. Sagis, and E. van der Linden, "Rheological Discrimination and Characterization of Carrageenans and Starches by Fourier Transform-Rheology in the Non-Linear Viscous Regime", J. Non-Newt. Fluid Mech., 2008, 151, 145-150. https://doi.org/10.1016/j.jnnfm.2008.01.001
- C. H. Bi, D. Li, L. J. Wang, Y. Wang, and B. Adhikari, "Characterization of Non-Linear Rheological Behavior of SPIFG Dispersions Using LAOS Tests and FT Rheology", Carbohydrate Polymers, 2013, 92, 1151-1158. https://doi.org/10.1016/j.carbpol.2012.10.067
- F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, "Xanthan Gum : Production, Recovery, and Properties", Biotechnol. Adv., 2000, 18, 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
- E. Pelletier, C. Viebke, J. Meadows, and P. A. Williams, "A Rheological Study of the Order-Disorder Conformational Transition of Xanthan Gum", Biopolymers, 2001, 59, 339-346. https://doi.org/10.1002/1097-0282(20011015)59:5<339::AID-BIP1031>3.0.CO;2-A
- M. Marcotte, A. R. Taherian-Hoshahili, and H. S. Ramaswamy, "Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature", Food Res. Int., 2001, 34, 695-703. https://doi.org/10.1016/S0963-9969(01)00091-6
- J. Ahmed and H. S. Ramaswamy, "Effect of High-Hydrostatic Pressure and Concentration on Rheological Characteristics of Xanthan Gum", Food Hydrocolloids, 2004, 18, 367-373. https://doi.org/10.1016/S0268-005X(03)00123-1
- B. Urlacher and O. Noble in "Thickening and Gelling Agents for Food-Xanthan" (A. Imeson Ed.), Chapman & Hall, London, 1997, pp.284-311.
- J. N. BeMiller and K. C. Huber in "Food Chemistry-Carbohydrates" (S. Damodaran, K. L. Parkin, and O. R. Fennema Eds.), CRC Press, Boca Raton, 2008, pp.83-154.
- P. J. Whitcomb and C. W. Macosko, "Rheology of Xanthan Gum", J. Rheol., 1978, 22, 493-505. https://doi.org/10.1122/1.549485
- W. E. Rochefort and S. Middleman, "Rheology of Xanthan Gum : Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments", J. Rheol., 1987, 31, 337-369. https://doi.org/10.1122/1.549953
- K. C. Tam and C. Tiu, "Steady and Dynamic Shear Properties of Aqueous Polymer Solutions", J. Rheol., 1989, 33, 257-280. https://doi.org/10.1122/1.550015
- M. Milas, M. Rinaudo, M. Knipper, and J. L. Schuppiser, "Flow and Viscoelastic Properties of Xanthan Gum Solutions", Macromolecules, 1990, 23, 2506-2511. https://doi.org/10.1021/ma00211a018
- A. B. Rodd, J. J. Cooper-White, D. E. Dunstan, and D. V. Boger, "Gel Point Studies for Chemically-Modified Biopolymer Networks Using Small Amplitude Oscillatory Rheometry", Polymer, 2001, 42, 185-198. https://doi.org/10.1016/S0032-3861(00)00311-6
- N. B. Wyatt and M. W. Liberatore, "Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum", J. Appl. Polym. Sci., 2009, 114, 4076-4084. https://doi.org/10.1002/app.31093
- E. Choppe, F. Puaud, T. Nicolai, and L. Benyahia, "Rheology of Xanthan Solutions as a Function of Temperature, Concentration and Ionic Strength", Carbohydrate Polymers, 2010, 82, 1228-1235. https://doi.org/10.1016/j.carbpol.2010.06.056
- L. Xu, G. Xu, T. Liu, Y. Chen, and H. Gong, "The Comparison of Rheological Properties of Aqueous Welan Gum and Xanthan Gum Solutions", Carbohydrate Polymers, 2013, 92, 516-522. https://doi.org/10.1016/j.carbpol.2012.09.082
- A. Giboreau, G. Cuvelier, and B. Launay, "Rheological Behavior of Three Biopolymer/Water Systems with Emphasis on Yield Stress and Viscoelastic Properties", J. Texture Stud., 1994, 25, 119-137. https://doi.org/10.1111/j.1745-4603.1994.tb01321.x
- R. Pal, "Oscillatory, Creep and Steady Flow Behavior of Xanthan-Thickened Oil-in-Water Emulsions", AIChE J., 1995, 41, 783-794. https://doi.org/10.1002/aic.690410405
- L. Ma and G. V. Barbosa-Canovas, "Viscoelastic Properties of Xanthan Gels Interacting with Cations", J. Food Sci., 1997, 62, 1124-1128. https://doi.org/10.1111/j.1365-2621.1997.tb12227.x
- R. K. Richardson and S. B. Ross-Murphy, "Nonlinear Viscoelasticity of Polysaccharide Solutions. 2 : Xanthan Polysaccharide Solutions", Int. J. Biol. Macromol., 1987, 9, 257-264. https://doi.org/10.1016/0141-8130(87)90063-8
- T. Lim, J. T. Uhl, and R. K. Prudhomme, "Rheology of Self-Associating Concentrated Xanthan Solutions", J. Rheol., 1984, 28, 367-379. https://doi.org/10.1122/1.549757
- M. M. Santore and R. K. Prudhomme, "Rheology of a Xanthan Broth at Low Stresses and Strains", Carbohydr. Polym., 1990, 12, 329-335. https://doi.org/10.1016/0144-8617(90)90074-3
- K. W. Song, Y. S. Kim, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior", Fiber. Polym., 2006, 7, 129-138. https://doi.org/10.1007/BF02908257
- J. S. Lee and K. W. Song, "Time-Dependent Rheology of Concentrated Xanthan Gum Solutions", Trans. Nordic Rheol. Soc., 2011, 19, 329-333.
- J. S. Lee, Y. S. Kim, and K. W. Song, "Transient Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Start-Up Shear Flow Fields : An Experimental Study Using a Strain-Controlled Rheometer", Korea-Aust. Rheol. J., 2015, 27, 227-239. https://doi.org/10.1007/s13367-015-0023-y
- J. S. Lee and K. W. Song, "Time-Dependent Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Interrupted Shear and Step-Incremental/Reductional Shear Flow Fields", Korea-Aust. Rheol. J., 2015, 27, 297-307. https://doi.org/10.1007/s13367-015-0029-5
- J. A. Carmona, P. Ramirez, N. Calero, and J. Munoz, "Large Amplitude Oscillatory Shear of Xanthan Gum Solutions : Effect of Sodium Chloride (NaCl) Concentration", J. Food Eng., 2014, 126, 165-172. https://doi.org/10.1016/j.jfoodeng.2013.11.009
- H. J. Ahn, H. Y. Kuk, J. S. Lee, and K. W. Song, "Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Stress Waveform and Lissajous Pattern Analysis", Text. Sci. Eng., 2016, 53, 328-339. https://doi.org/10.12772/TSE.2016.53.328
- A. E. Green and R. S. Rivlin, "The Mechanics of Non-Linear Materials with Memory (Part I)", Arch. Rat. Mech. Anal., 1957, 1, 1-21. https://doi.org/10.1007/BF00297992
- A. E. Green, R. S. Rivlin, and A. J. M. Spencer, "The Mechanics of Non-Linear Materials with Memory (Part II)", Arch. Rat. Mech. Anal., 1959, 3, 82-90. https://doi.org/10.1007/BF00284166
- A. E. Green and R. S. Rivlin, "The Mechanics of Non-Linear Materials with Memory (Part III)", Arch. Rat. Mech. Anal., 1959/60, 4, 387-404.
- W. Ramirez, "The FFT Fundamentals and Concepts", Prentice-Hall, New Jersey, 1985.
- R. Lapasin and S. Pricl, "Rheology of Industrial Polysaccharides : Theory and Applications", Aspen Publishers, Gaithersburg, MD, 1999.
- B. T. Stokke, B. E. Christensen, and O. Smidsrod in "Polysaccharides : Structural Diversity and Functional Versatility- Macromolecular Properties of Xanthan" (S. Dumitriu Ed.), Marcel Dekker, New York, 1998, pp.433-472.
- B. Katzbauer, "Properties and Applications of Xanthan Gum", Polym. Degrad. Stabil., 1998, 59, 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8
- G. Holzwarth and E. B. Prestridge, "Multistranded Helix in Xanthan Polysaccharide", Science, 1977, 197, 757-759. https://doi.org/10.1126/science.887918
- T. A. Camesano and K. J. Wilkinson, "Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy", Biomacromolecules, 2001, 2, 1184-1191. https://doi.org/10.1021/bm015555g
- K. Ogawa and T. Yui in "Polysaccharides : Structural Diversity and Functional Versatility-X-ray Diffraction Study of Polysaccharides" (S. Dumitriu Ed.), Marcel Dekker, New York, 1998, pp.101-130.
- K. Born, V. Langendorff, and P. Boulenguer, "Biopolymers", Vol. 5, Wiley-Interscience, New York, 2001.
- M. A. Zirnsak, D. V. Boger, and V. Tirtaatmadja, "Steady Shear and Dynamic Rheological Properties of Xanthan Gum Solutions in Viscous Solvents", J. Rheol., 1999, 43, 627-650. https://doi.org/10.1122/1.551007
- M. S. Chun, C. Kim, and D. E. Lee, "Conformation and Translational Diffusion of a Xanthan Polyelectrolyte Chain : Brownian Dynamics Simulation and Single Molecule Tracking", Phys. Rev. E., 2009, 79, 051919. https://doi.org/10.1103/PhysRevE.79.051919
- M. S. Chun and M. J. Ko, "Rheological Correlations of Relaxation Time for Finite Concentrated Semiflexible Polyelectrolytes in Solvents", J. Kor. Phys. Soc., 2012, 61, 1108-1113. https://doi.org/10.3938/jkps.61.1108
- M. S. Chun and O. O. Park, "On the Intrinsic Viscosity of Anionic and Nonionic Rodlike Polysaccharide Solutions", Macromol. Chem. Phys., 1994, 195, 701-711. https://doi.org/10.1002/macp.1994.021950227
- G. S. Chang, J. S. Koo, and K. W. Song, "Wall Slip of Vaseline in Steady Shear Rheometry", Korea-Aust. Rheol. J., 2003, 15, 55-61.
- K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Nonlinear Response of Complex Fluids under LAOS (Large Amplitude Oscillatory Shear) Flow", Korea-Aust. Rheol. J., 2003, 15, 97-105.
- T. Neidhofer, M. Wilhelm, and B. Debbaut, "Fourier-Transfrom Rheology Experiments and Finite-Element Simulations on Linear Polystyrene Solutions", J. Rheol., 2003, 47, 1351-1371. https://doi.org/10.1122/1.1608954
- J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990.
- A. J. Giacomin and J. M. Dealy in "Techniques in Rheological Measurement : Large-Amplitude Oscillatory Shear" (A. A. Collyer Ed.), Chapman & Hall, London, 1993, pp.99-121.
- H. Kim, K. Hyun, D. J. Kim, and K. S. Cho, "Comparison of Interpretation Methods for Large Amplitude Oscillatory Shear Response", Korea-Aust. Rheol. J., 2006, 18, 91-98.
- R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, "New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear", J. Rheol., 2008, 52, 1427-1458. https://doi.org/10.1122/1.2970095
- W. Yu, P. Wang, and C. Zhou, "General Stress Decomposition in Nonlinear Oscillatory Shear Flow", J. Rheol., 2009, 53, 215-238. https://doi.org/10.1122/1.3037267
- C. O. Klein, H. W. Spiess, A. Calin, C. Balan, and M. Wilhelm, "Separation of the Nonlinear Oscillatory Response into a Superposition of Linear, Strain Hardening, Strain Softening, and Wall Slip Response", Macromolecules, 2007, 40, 4250-4259. https://doi.org/10.1021/ma062441u