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Abstract This study analyzed the distribution of endophytic fungi in 3 coastal environments with different climatic, geographical,
and geological characteristics: the volcanic islands of Dokdo, the East Sea, and the West Sea of Korea. The isolated fungal
endophytes were characterized and analyzed with respect to the characteristics of their host environments. For this purpose, we
selected common native coastal halophyte communities from three regions. Molecular identification of the fungal endophytes
showed clear differences among the sampling sites and halophyte host species. Isolates were also characterized by growth at
specific salinities or pH gradients, with reference to previous geographical, geological, and climate studies. Unlike the East Sea or
West Sea isolates, some Dokdo Islands isolates showed endurable traits with growth in high salinity, and many showed growth
under extremely alkaline conditions. A smaller proportion of West Sea coast isolates tolerate compared to the East Sea or Dokdo
Islands isolates. These results suggest that these unique fungal biota developed through a close interaction between the host
halophyte and their environment, even within the same halophyte species. Therefore, this study proposes the application of
specific fungal resources for restoring sand dunes and salt-damaged agricultural lands and industrialization of halophytic plants.
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Endophytic microorganisms, such as the fungi inhabiting
the inner tissues and/or organs of plants, are regarded as
valuable ecological and agricultural resources [1]. Generally,
endophytic fungal species have a positive impact on their

host by enhancing plant growth or inducing systemic
resistance [2, 3]. Therefore, numerous recent studies have
focused on positive fungus-plant interactions. Halophyte
plant species can withstand a certain amount of salt in soil
environment, which is the microecological zone surrounding
the plant roots, and they can be used to restore salt-damaged
environments, including agricultural lands, sand dunes,
and mud flats. Thus, securing and characterizing such
fungal species and revealing the phylogenetic relationships
among these endophytic microorganisms are major strategies
for utilizing these microbial resources [4, 5].

Soil microbial communities can be modified by
environmental factors. Thus, their functional and physiological
features often reflect their environment [6]. Unique
environments or interactions with halophytic hosts can
affect the physiological or phylogenetic characteristics of
the microbiome [7], and the structure and composition of
fungal endophyte communities are influenced by many
factors and complex interactions [8-17].

This study focused on the distribution and characteristics
of endophytic fungal biota in relation to host plant species
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native to contrasting geographic and environment. To this
end, endophytic fungi were isolated from 3 halophyte species,
Sedum oryzifolium, Lysimachia mauritiana, and Aster
spathulifolius, which are native to the coastal areas of Korea,
including the sampling sites, the Dokdo Islands, West Sea,
and East Sea. The fungi were then characterized both
taxonomically, based on their nuclear ribosomal internal
transcribed spacer (nrITS) sequences, and functionally, by
analysis of their growth properties at different salinities
and pH values. Depend on previous geographical studies
[5, 18, 19] and the physiological properties of the host
halophytes [4, 20], we found differences between endophytic
groups according to environmental conditions even if they
shared the same halophyte host species [5, 18, 19]. Thus,
comparative analysis and characterization of symbiotic
fungi based on phenotype and host environment may
facilitate environmental remediation by promoting the
adaptation of halophyte species to harsh environments. To
our knowledge, this is the first comparative study that
reveals the fungal flora interacting with halophytic plants
inhabiting coastal environments.

MATERIALS AND METHODS

Halophyte sampling and isolation of endophytic fungi.
Three representative communities of halophytes (Sedum
oryzifolium, Lysimachia mauritiana, and Aster spathulifolius)
[20] native to the coasts of the Dokdo Islands, East Sea,
and West Sea of Korea were sampled from the locations
listed in Table 1. Fifty individuals per halophytic plant species
per site were sampled (450 individuals in total). Plant
specimens were collected in sterile bottles and stored at
4oC. The root was rinsed with sterile distilled water (SDW)
and 0.1% Tween solution (Sigma-Aldrich, St. Louis, MO,
USA) to eliminate suspended solids. Then, the root were
treated with a 1.0% sodium hypochlorite solution for 5 min
to sterilize the root surface. Subsequently, the samples were
submerged in 1% perchloric acid for 5 min and washed
extensively with SDW twice. Residual water was eliminated
with sterile gauze, and 50 pieces (3 cm in length) were cut
from the roots of the plant. These samples were placed in

Hagem minimal medium containing 80 ppm streptomycin
(Sigma-Aldrich) to inhibit the growth of root bacteria or
actinomycetes, and then incubated at 25oC for 20 days.
Endophytic fungi were isolated by subculturing in the
same medium at the same temperature. Pure isolates were
then subcultured on potato dextrose agar (PDA; Difco,
Franklin Lakes, NJ, USA) and selected based on morphological
(color, colony shape, etc.) differences [7].

Extraction of genomic DNA and PCR. Endophytic
fungi from halophytic plants were inoculated into potato
dextrose broth (PDB; Difco) medium and incubated at
25oC with shaking at 120 rpm for 7 days. Filtered mycobionts
were lyophilized for 2 days. Genomic DNA was extracted
from lyophilized mycobionts using the DNeasy Plant Mini
kit (Qiagen, Valencia, CA, USA). Primers (ITS1 and ITS4)
targeting nrITS region were used for PCR amplification
[21]. The PCR cycling conditions were as follows: pre-
denaturation (94oC, 4 min), followed by denaturation (94oC,
1 min), annealing (52–58oC, 1 min), and extension (72oC,
2 min) for 35 cycles, and a final extension step (72oC,
2 min) [21]. PCR products were confirmed by electrophoresis
on a 1.5% agarose gel stained with ethidium bromide.
Bands were observed using a UV transilluminator, purified
with the AccuPrep PCR & Gel Extraction kit (Bioneer,
Daejeon, Korea), and sequenced using an ABI 3730XL DNA
analyzer (Applied Biosystems, Carlsbad, CA, USA) [21].

Fungal identification and diversity. To confirm the
identity of the isolates, a phylogenetic tree was constructed.
Endophytic fungal nrITS sequences showed greater than
99% similarity with the sequences of other fungal species
in the GenBank databases of the National Center for
Biotechnology Information (NCBI). Phylogenetic relationships
were analyzed by MEGA ver. 6.0 using alignments prepared
with ClustalW [7]. Phylogenetic trees were inferred using
the maximum-likelihood algorithm and Kimura 2-parameter
distances. The stability of relationships was evaluated by
bootstrap analysis with 1,000 replications [7, 22]. All
endophytic fungal isolate sequences (207) were deposited
in NCBI GenBank (accession Nos. KU555946 to KU556152)

Table 1. Information of sampling sites and number of isolated endophytic fungal per each halophytic species

Sampling area Scientific names GPS information Geographical position No. of
isolates

The Dokdo Islands,
Republic of Korea

Sedum oryzifolium 37o14'22.02'' N, 131o52'6.11'' E Dokdo-ri, Ulleung-gun, Gyeongsangbuk-do 022
Lysimachia mauritiana 37o14'22.69'' N, 131o52'10.09'' E Dokdo-ri, Ulleung-gun, Gyeongsangbuk-do 015
Aster sphathulifolius 37o14'22.78'' N, 131o52'10.17'' E Dokdo-ri, Ulleung-gun, Gyeongsangbuk-do 024

The East Sea,
Republic of Korea

S. oryzifolium 36o16'39.13'' N, 129o22'42.38'' E Jangsa-ri, Yeongdeok-gun, Gyeongsangbuk-do 041
L. mauritiana 36o15'18.68'' N, 129o22'21.56'' E Jigyeong-ri, Pohang-si, Gyeongsangbuk-do 040
A. sphathulifolius 36o15'18.29'' N, 129o22'22.61'' E Jigyeong-ri, Pohang-si, Gyeongsangbuk-do 037

The West Sea,
Republic of Korea

S. oryzifolium 35o40'56.63'' N, 126o31'50.25'' E Junggye-ri, Buan-gun, Jeollabuk-do 010
L. mauritiana 35o41'0.18'' N, 126o31'52.22'' E Daehang-ri, Buan-gun, Jeollabuk-do 008
A. sphathulifolius 36o56'10.17'' N, 126o17'27.36'' E Nae-ri, Taean-gun, Chungcheongnam-do 010

Total 207
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(Supplemental Table 1). The diversity [6] of the isolates
was determined by assessing species richness based on the
Margalef (Dmg) [23] and Menhinick (Dmn) indices [24],
and species diversity was measured by Shannon (H) [25]
and Simpson (D) indices [25].

Physiological characterization in NaCl and pH
gradients. Growth of fungal isolates at different NaCl
concentrations and pH values was determined by weighing
the dried fungal colonies following incubation in liquid
media with different salt levels and pH values, respectively.
The detailed experimental procedures are as follows. Fresh
colonies of each isolate were cultivated on PDA medium
and then used to inoculate PDB liquid medium containing
different concentrations of NaCl (3.5%, 5.0%, 7.0%, and
9.0% [w/v]). The fungal strains were incubated for 7 days

at 25oC with shaking at 150 rpm and then harvested by
filtration. The harvested fungal culture filtrates were
lyophilized at −80oC, and then the dried biomass was
measured. Growth at each pH value was determined in
PDB medium adjusted to various pH values (pH 4.0, 5.5,
7.0, and 9.0) by the addition of hydrogen chloride (HCl)
or sodium carbonate (Na2CO3) [26-28]. Incubation and
measurement of each fungal isolate was done as described
for the salinity tolerance test.

RESULTS AND DISCUSSION

Fungal identification. A total of 207 isolates were
obtained from 3 species of halophytic plants native to the
coasts of Dokdo (61 isolates) and the East Sea (118 isolates)
and West Sea (28 isolates) (Table 1). The isolates from the

Fig. 1. Endophytic distribution of isolates from halophytes native to each coastal region, based on class level (A), genus level
(B) (described top 10 genera). A. spathulifolius, Aster spathulifolius; L. mauritiana, Lysimachia mauritiana; S. oryzifolium, Sedum
oryzifolium.
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Fig. 2. Phylogenetic trees of fungal endophytes from each coastal area. Trees were obtained using the maximum-likelihood
algorithm with the Kimura 2-parameter. Kluyveromyces lactis NRRLY-827 NR131273 was used as the outgroup. The accession
number is given in parentheses. Bootstrap values > 70% are shown alongside the branch considered. Trees of fungal isolates
from the Dokdo Islands (A), the East Sea coast (B), the West Sea coast (C).
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East Sea coast were the most morphologically diverse. The
distribution ratios (Fig. 1A and 1B) and phylogenetic
relationships (Fig. 2A–2C), for each genus per halophytic
host are presented (Supplementary Tables 1–4). The isolates
were grouped into 3 phyla (Ascomycota, Zygomycota, and
Basidiomycota), 8 classes (Agaricomycetes, Ascomycetes,
Dothideomycetes, Euascomycetes, Mucoromycotina,
Sordariomycetes, Trichomycetes, and Zygomycetes), and 36
genera based on comparison to nrITS sequences in databases
by BLAST (Supplementary Tables 1–4). The Dokdo Islands
and East Sea and West Sea coast isolates belonged to 16,
25, and 9 genera, respectively. Among 36 fungal genera, only
Fusarium and Peniciliium species was commonly identified
in all halophyte species from all geological regions.
Interestingly, Ilyonectria species was commonly identified
in all plant species in the East Sea coast. Depend on geological
distribution, Penicillium was shown to dominant fungal
species in the Dokdo Islands or East Sea coast, but Fusarium
species showed dominance in the West Sea coast. Dominant
fungal genera in specific halophyte species was varied by
their native geological region: S. oryzifolium (Fusarium in
all three coasts), L. mauritiana (Dokdo Islands: Penicillium,
East Sea and West Sea coast: Fusarium), A. sphathulifolius
(Dokdo Islands and the West Sea coasts: Penicillium, East Sea
coast: Fusarium). As the final outcome, Fusarium and
Penicillium are dominated in each halophyte species, and
also identified as commonly distributed in all sites or all
halophyte species. On the other hand, fungal species which
showing low dominances in each of plant species or
geological regions showed restricted distribution. Regarding
the geological location of each sampling fields (segregated
by at least 300 km), common fungal genera from ecologically
segregated region were more likely to be closely associated
with their host halophyte species. In this study, Fusarium or
Penicillium might play a role as closer symbiosis to their
host plants more than other fungal genera. Except these

two taxa, other fungal genera might be under weak
interdependency with their host plants, and variable by
their geographic character.

Species richness and diversity indices. The fungal
diversity was analyzed (Table 2). According to the Margalef
richness index, which describes the number of different
species represented in an ecological community, East Sea
coast showed higher value than that of the Dokdo Islands or
the West Sea coast. Species richness in plant S. oryzifolium
is as follows: East Sea coast (3.046) > Dokdo Islands (2.517) >
West Sea coast (1.303), and this order is not different in
other halophyte species. Unique, harse environment of the
Dokdo Islands might limit the species richness in endophyte
community, comparing the East Sea coast and the Dokdo
Islands. Meanwhile, there was no meaningful pattern
comparing the species richness between halophytic species
native to same geological location. Regarding these results,
fungal species richness was strongly affected by unique
environment, rather than halophyte species. Nevertheless,
commonly distributed fungal genera Penicillium or Fusarium
in all sites or plant species indicates close interaction with
their host halophyte with overcoming strong affection of
geographical characteristic. Meanwhile, extraordinarily low
dominance or restrictive distribution of fungal genera (except
Penicillium or Fusarium) indicates environmental selective
pressure to endophytic fungal community.

Characterization based on growth properties across a
NaCl or pH gradient. To identify how each salt-damaged
environment affected the endophytic fungal biota, growth
was measured at various NaCl concentrations and pH
values (Tables 3 and 4). In the case of the fungal isolates
from Dokdo, about 15% of isolates grew optimally in 9.0%
(w/v) NaCl, irrespective of halophyte species. In contrast,
there was no isolates from the East Sea or West Sea which
grew at 9% (w/v). Halophytes require salt for survival.
Therefore, comparatively higher concentrations of Na+

might be absorbed by halophytes native to the Dokdo
Islands than the concentrations absorbed by those on the
East Sea or West Sea coasts [29]. This might be caused by
the drastic seawater intrusion and accumulation of salt on
the coast of the Dokdo Islands [18]. The West Sea samples
presented a smaller percentage of isolates which showing
endurance to such high salt gradient than the East Sea
samples, presumably due to the lower seawater intrusion
and following Na+ accumulation. We concluded that the
fungal endophytes may have evolved such tolerable traits
because of their symbiotic relationship with host halophytes
that are adapted to high-salt coastal environments.
Approximately 16% of the Dokdo isolates grew optimally
in strong alkaline conditions (pH 9.0 In contrast, most
isolates from the East Sea and West Sea grew well at pH
4.0–7.0), but failed to grow at 9% (w/v) except for ELM149.
Moreover, isolates from L. mauritiana and A. spathulifolius,
which are native to the West Sea, only grew at pH 4.0–7.0.

Fig. 2. Continued.
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Considering that the pH of seawater is approximately 8.3
[30], the large seawater intrusions or low soil buffering
capacity of the Dokdo Islands might lead to Na+ accumulation
in the halophytes’ internal tissue [20, 29, 31]. Thus, the
high proportion of alkalophilic fungal endophytes might
have resulted from adaptation to this specialized plant-
environment interaction. Conversely, the neutral or alkaline
pH of the West Sea may have arisen from low organic
matter content and salt accumulation, rather than large
seawater intrusions [18]. For this reason, halophytic Na+

absorption might not be as pronounced on the West Sea
coast. Therefore, although the rhizosphere soil is alkaline,
endophytic fungi from West Sea halophytes that cannot
grow at alkaline pH values may adjust the environment
inside the host plants, and thus show acidophilic traits.
In contrast, the Dokdo Islands isolates grew at a broader
pH range than isolates from the East Sea and West Sea
coasts (Table 4). The Dokdo Islands are exposed to abrupt
rainstorms, drying of volcanic soil by strong winds, sun
reflected by water around the islands, and severe sea water
intrusions. These complex climatic factors can lead to large
variations in rhizosphere pH or salinity; adaptations to
such conditions allow a wider distribution of cultivable
isolates. The East Sea coast, mostly composed of sandy soil,
showed limited glycophytic flora but domination of a
halophytic community due to rapid seawater intrusion.
Total organic material content is about 1.0%, and surface
layer seawater affects coastal soil, which has a salinity of
3.3–3.4% [5, 19]. Organic matter content is low due to the
sandy soil and shows a pH range of 6.65–7.15 due to
continuous wafting of seawater [5]. Water intrusion occurred
more slowly than on the Dokdo Islands but rapid compared
to West Sea coast [5, 19]. In support of this observation,
endophytic fungal biota from halophytic plants on the
Dokdo Islands and East Sea coasts are affected by strong
environmental characters (Fig. 1A and 1B).

Numerous endophyte microbiomes have been studied
with an aim to secure microbial resources for the Nagoya
protocol. Endophytic microbiomes are essential resources
for agriculture and environmental restoration. The results
of this study indicates importance of physiologically
appropriate selection of fungal biofertilizers to applicate
under specific agricultural conditions. Endophytic fungal
biota that have evolved or adapted independent of their
unique coastal environment or halophyte host species are
the fungal resources that are most needed for successful
restoration of diverse and changing environments. A BLAST
search revealed that several isolates show relatively high
similarity to previously reported beneficial endophytic
fungi. In particular, Aspergillus, Cadophora, Trichoderma,
Penicillium, Curvularia, Clonostachys, Fusarium, and
Lecanicillium are well known genera that promote plant
growth and/or protect roots against biotic and abiotic
stresses in agricultural lands [7, 32-38]. Among the Dokdo
Island isolates, most Penicillium isolates grew at alkaline
pH (DLM113, DAS114, DAS128, and DAS130) or under high

salt conditions (DSO118, DSO119, DLM112, and DAS128),
in line with the results from the growth experiments at
pH/saline gradients. These observations demonstrate the
importance of applying appropriate fungal resources. Further
studies are need to identify the relationships between host
plants and the specific genera identified in this study in
specific soil conditions.

In this study, diverse endophytic fungal isolates from the
roots of halophytic plants on the coasts of the Dokdo
Islands and the East Sea and West Sea of Korea were
phylogenetically and physiologically characterized relative
to their environment. These unique and specific microbial
resources could be applied for environmental remediation
purposes.

ELECTRONIC SUPPLEMENTARY MATERIAL

Supplementary data including four tables can be found
with this article online at http://www.mycobiology.or.kr/
src/sm/mb-45-150-s001.pdf.
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