DOI QR코드

DOI QR Code

Preparation and Characterization of Anion Exchange Membrane Based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) with Spacer-type Conducting Group

Spacer-type 전도기가 도입된 가교형 poly(2,6-dimethyl-1,4-phenylene oxide) 음이온 교환막의 제조 및 특성평가

  • Lim, Haeryang (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University) ;
  • Kim, Tae-Hyun (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University)
  • Received : 2017.10.19
  • Accepted : 2017.10.27
  • Published : 2017.10.31

Abstract

As the problems related to the environmental pollution such as carbon dioxide emission are emerging, the need for the renewable energy and environmentally friendly energy is getting intense. Fuel cells are eco-friendly energy generation devices that generate electrical energy and produce water as a sole by-product. Compared to the traditional proton exchange membrane fuel cell (PEMFC), anion exchange membrane alkaline fuel cell (AEMAFC) has a main advantage of possibility to use low cost metal catalysts due to its faster kinetics. The AEM, which conducts $OH^-$ ions, should possess high ion conductivity as well as high chemical stability at high pH conditions. We hereby introduce a crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) having a spacer-type conducting group as novel AEM, and report a high ion conductivity ($67.9mScm^{-1}$ at $80^{\circ}C$) and mechanical properties (Young's modulus : 0.53 GPa) as well as chemical stability (6.8% IEC loss at $80^{\circ}C$ for 1,000 h,) for the developed membrane.

화석연료의 무분별한 사용에 따라 이산화탄소 배출 등 환경오염의 문제가 대두되면서, 전 세계적으로 신 재생에너지 및 친환경 에너지에 많은 연구가 이루어지고 있다. 연료전지는 전기에너지를 발생시키며 부산물로써 물만을 생성하는 친환경 에너지 발전 장치이다. 특히, 음이온 교환막을 이용한 알칼리 연료전지(Anion Exchange Membrane Alkaline Fuel Cell, AEMAFC)는 수소이온 교환막을 이용한 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC)에 비해 보다 높은 촉매의 활성으로 인해 저가의 금속 촉매의 사용이 가능하다는 장점이 있다. 이러한 AEMAFC에서 요구되는 AEM의 특성으로는 연료전지가 작동하는 높은 pH 조건에서 높은 이온전도도 뿐만 아니라 화학적 안정성이다. 본 연구에서는 화학적 안정성을 극대화 시키기 위하여 poly(2,6-dimethyl-1,4-phenylene oxide) 고분자에 spacer-type의 전도기를 도입함과 동시에 가교법을 이용하여 높은 이온전도도($80^{\circ}C$, $67.9mScm^{-1}$)와 기계적 성질(영률 : 0.53 GPa) 뿐만 아니라 높은 pH 조건에서 화학적 안정성($80^{\circ}C$, 1000 h, 6.8% loss of IEC)을 갖는 AEMAFC용 고분자 전해질 막으로써의 가능성을 제시하였다.

Keywords

References

  1. J.-E. Son, "Hydrogen & fuel cell technology", Korean Chem. Eng. Res., 42, 1 (2004).
  2. M. I. Ahmad, S. M. J. Zaidi, and S. U. Rahman, "Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells", Desalination, 193, 387 (2006). https://doi.org/10.1016/j.desal.2005.06.069
  3. B. Bae, E. Kim, S. Lee, and H. Lee, "Research trends of anion exchange membranes within alkaline fuel cells", New & Renewable Energy, 11, 52 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
  4. J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, and L. Zhuang, "Anion-exchange membranes in electrochemical energy systems", Energy Environ. Sci., 7, 3135 (2014). https://doi.org/10.1039/C4EE01303D
  5. G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, "Polymeric materials as anion-exchange membranes for alkaline fuel cells", Prog. Polym. Sci., 36, 1521 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.004
  6. G. Merle, M. Wessling, and K. J. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: A review", Membr. Sci., 377, 1 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
  7. Y. Zha, M. L. Disabb-Miller, Z. D. Johnson, M. A. Hickner, and G. N. Tew, "Metal-cation-based anion exchange membranes", J. Am. Chem. Soc., 134, 4493 (2012). https://doi.org/10.1021/ja211365r
  8. O. D. Thomas, K. J. W. Y. Soo, T. J. Peckham, M. P. Kulkarni, and S. Holdcroft, "A stable hydroxide- conducting polymer", J. Am. Chem. Soc., 134, 10753 (2012). https://doi.org/10.1021/ja303067t
  9. E. A. Weiber and P. Jannasch, "Ion distribution in quaternary ammonium functionalized aromatic polymers: Effects on the ionic clustering and conductivity of anion exchange membranes", ChemSusChem, 7, 2621 (2014). https://doi.org/10.1002/cssc.201402223
  10. L. Wu, T. Xu, D. Wu, and X. Zheng, "Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell", J. Membr. Sci., 310, 577 (2008). https://doi.org/10.1016/j.memsci.2007.11.039
  11. L. Zhu, T. J. Zimudzi, Y. Wang, X. Yu, J. Pan, J. Han, D. I. Kushner, L. Zhuang, and M. A. Hickner, "Mechanically robust anion exchange membranes via long hydrophilic cross-linkers", Macromolecules, 50, 2329 (2017). https://doi.org/10.1021/acs.macromol.6b01381
  12. Y.-K. Choe, C. Fujimoto, K.-S. Lee, L. T. Dalton, K. Ayers, N. J. Henson, and Y. S. Kim, "Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: A computational and experimental study" Chem. Mater., 26, 5675 (2014). https://doi.org/10.1021/cm502422h
  13. Y. Yang and D. M. Knauss, "Poly(2,6-dimethyl- 1,4-phenylene oxide) b poly(vinylbenzyltrimethylammonium) diblock copolymers for highly conductive anion exchange membranes", Macromolecules, 48, 4471 (2015). https://doi.org/10.1021/acs.macromol.5b00459
  14. H.-S. Dang and P. Jannasch, "Alkali-stable and highly anion conducting poly(phenylene oxide)s carrying quaternary piperidinium cations", J. Mater. Chem. A, 4, 11924 (2016). https://doi.org/10.1039/C6TA01905F
  15. M. R. Hibbs, C. H. Fujimoto, and C. J. Cornelius, "Synthesis and characterization of poly(phenylene)- based anion exchange membranes for alkaline fuel cells", Macromolecules, 42, 8316 (2009). https://doi.org/10.1021/ma901538c
  16. A. D. Mohanty, C. Y. Ryu, Y. S. Kim, and C. S. Bae, "Stable elastomeric anion exchange membranes based on quaternary ammonium-tethered polystyrene b poly(ethylene-cobutylene) b polystyrene triblock copolymers", Macromolecules, 48, 7085 (2015). https://doi.org/10.1021/acs.macromol.5b01382
  17. C. X. Lin, X. Q. Wang, E. N. Hu, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability", J. Membr. Sci., 541, 358 (2017). https://doi.org/10.1016/j.memsci.2017.07.032
  18. A. D. Monhanty and C. S. Bae, "Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells", J. Mater. Chem. A, 2, 17314 (2014). https://doi.org/10.1039/C4TA03300K
  19. H. -S. Dang, E. A. Weiber, and P. Jannasch, "Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes", J. Mater. Chem. A, 3, 5280 (2015). https://doi.org/10.1039/C5TA00350D
  20. D. R. Dekel, M. Amar, S. Willdorf, M. Kosa, S. Dhara, and C. E. Diesendruck, "Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications", Chem. Mater., 29, 4425 (2017). https://doi.org/10.1021/acs.chemmater.7b00958