DOI QR코드

DOI QR Code

Electrokinetics Evaluation of Poly(styrene-ethylene-butylene-styrene) Based Anion Exchange Membrane

Poly(styrene-ethylene-butylene-styrene)계 고분자 음이온교환막 계면동전위 특성평가

  • Son, Tae Yang (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Yun, Jun Seong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Han, Song I (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 손태양 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 윤준성 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 한송이 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2017.09.09
  • Accepted : 2017.09.12
  • Published : 2017.10.31

Abstract

The zeta potential, called an electrokinetic potential, refers to the potential difference caused by electrodynamic phenomenon, which is a value obtained by quantifying the surface charge property. The zeta potential has been actively studied for membrane fouling, confirmation of modification and substituent confirmation through surface charge analysis. The methods of measurement for zeta potential were developed on the basis of electrophoresis, electrosmosis and streaming potential. Among them, it was known that the streaming potential method was suitable for the flat sheet membrane. So, in this study, aminated poly(styrene-ethylene-butylene-styrene) membranes were prepared by introducing ammonium groups and the streaming potentials of the prepared membranes were measured by using an electrokinetic potential analyzer (SurPASS) and the results were analyzed.

계면동전위라 불리는 제타전위(zeta potential)란 표면 전하적 특성을 정량화 한 값으로 전기동역학적 현상으로 발생하는 전위차를 말한다. 제타전위는 막오염(fouling)과 표면전하 분석을 통한 개질 확인 및 치환기 확인에 대한 연구가 활발히 진행되어 왔다. 그리고 제타전위를 측정하는 방법으로는 전기영동(electrophoresis), 전기삼투(eletrosmosis), 유동전위(streaming potential)를 기초로 개발되었고, 그중에서도 평막은 유동전위 측정이 적합하다고 알려졌다. 따라서, 본 연구에서는 poly(styrene-ethylene-butylene-styrene) 고분자에 암모늄을 도입하여 아민화된 SEBS 평막 형택의 분리막을 제조하고, 계면동전위 측정기를 이용하여 제조된 분리막들의 유동전위를 측정하여 결과를 분석하였다.

Keywords

References

  1. M. Nystrom and H. Zhu, "Characterization of cleaning results using combined flux and streaming potential methods", J. Membr. Sci., 131, 195 (1997). https://doi.org/10.1016/S0376-7388(97)00053-7
  2. A. Nabe, E. Staude, and G. Belfort, "Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions", J. Membr. Sci., 133, 57 (1997). https://doi.org/10.1016/S0376-7388(97)00073-2
  3. I. C. Kim, J. G. Choi, N. S. Choi, J. H. Kim, and T. M. Tak, "Synthesis of sulfonated polyethersulfone membrane material for ultrafiltration by heterogeneous sulfonation and fouling reduction effect", Membr. J., 8, 210 (1998).
  4. E. H. Cho, S. I. Cheong, and J. W. Rhim, "Study on the fouling reduction of the RO membrane by the coating with an anionic polymer", Membr. J., 22, 481 (2012).
  5. I. H. Kim, E. H. Ji, J. W. Rhim, and S.I. Cheong, "Studies on the fouling reduction thourgh the coating of poly(vinyl alcohol) on polyamide reverse osmosis membrane surface", Membr. J., 22, 272 (2012).
  6. H. Xie, T. Saito, and M. A. Hickner, "Zeta potential of ion-conductive membranes by streaming current measurements", Langmuir, 27, 4721 (2011). https://doi.org/10.1021/la105120f
  7. T. S. Lee, S. Y. Lee, J. H. Lee, and S. K. Hong, "Measurement and methods for analyzing zeta potential of the external surface of hollow fiber membranes", J. Korean Soc. Water Wastewater, 23, 353 (2009).
  8. R. Rautenbach and A. Groschi, "Separation potential of nanofiltration membranes", Desalination, 77, 73 (1990). https://doi.org/10.1016/0011-9164(90)85021-2
  9. M. Elimelech, W. H. Chen, and J. J. Waypa, "Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer", Desalination, 95, 269 (1994). https://doi.org/10.1016/0011-9164(94)00064-6
  10. S. L. Walker, S. Bhattacharjee, E. M. V. Hoek, and M. Elimelech, "A novel asymmetric clamping cell for measuring streaming potential of flat surfaces", Langmuir, 18, 2193 (2002). https://doi.org/10.1021/la011284j
  11. M. S. Chun, H. I. Cho, and I. K. Song, "Electrokinetic behavior of membrane zeta potential during the filtration of colloidal suspensions", Desalination, 148, 363 (2002). https://doi.org/10.1016/S0011-9164(02)00731-2
  12. E. Hinke and E. Staude, "Streaming potential of microporous membranes made from homogeneously functionalized polysulfone", J. Appl. Polym. Sci., 42, 2951 (1991). https://doi.org/10.1002/app.1991.070421112
  13. R. J. Hunter, "Zeta potentials in colloid science: Principles and applications, pp. 59-121, Academic Press, London (1988).
  14. A. Szymczyk, A. Pierre, J. C. Reggiani, and J. Pagetti, "Characterization of the electrokinetic properties of plane inorganic membranes using streaming potential measurements", J. Membr. Sci., 134, 59 (1997). https://doi.org/10.1016/S0376-7388(97)00094-X
  15. M. Nystrom, A. Pihlajamaki, and N. Ehsani, "Characterization of ultrafiltration membranes by simultaneous streaming potential and flux measurements", J. Membr. Sci., 87, 245 (1994). https://doi.org/10.1016/0376-7388(94)87031-4
  16. C. Werner, H. J. Jacobasch, and G. Reichelt, "Surface characterization of hemodialysis membranes based on streaming potential measurements", J. Biomater. Polymer Edn., 7, 61 (1995).
  17. T. Y. Son, J. H. Kim, C. H. Park, and S. Y. Nam, "Preparation and characterization of hydrophilic aminated poly(styrene-ethylene-butylene-styrene) polymer membrane", Membr. J., 24, 336 (2017).