DOI QR코드

DOI QR Code

메조스케일 전산모사를 통한 술폰화 폴리이미드의 수화채널 형성 연구

Investigation of Water Channel Formation in Sufonated Polyimides Via Mesoscale Simulation

  • 박치훈 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 이소영 (한국과학기술원 연료전지센터) ;
  • 이창현 (단국대학교 에너지공학과)
  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Lee, So Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Chang Hyun (Energy Engineering Department, College of Engineering, Dankook University)
  • 투고 : 2017.09.09
  • 심사 : 2017.09.11
  • 발행 : 2017.10.31

초록

연료전지용 고분자 전해질막에 있어서 가장 중요한 특성인 수소이온 전달 능력은 내부에서 형성되는 수화채널의 분포 및 형상에 큰 영향을 받게 된다. 비과불화탄소계인 탄화수소계 전해질막의 경우, 과불화탄소계 전해질막인 나피온에 비하여 이러한 수화채널이 약하게 형성되는 것으로 알려져 있으며 따라서 상대적으로 낮은 이온전달 성능을 나타내는 것으로 보고되고 있다. 본 연구에서는 컴퓨터를 이용한 전산모사 기술의 하나인 메조스케일 전산모사 기술을 이용하여 탄화수소계 연료전지용 전해질막인 술폰화 폴리이미드의 가습조건에서의 수화채널 형성 및 상분리 현상을 관찰하였다. 이를 통하여 술폰화 폴리이미드 내부에서 물분자 비드는 친수성 영역 전체에 걸쳐서 고르게 분포되며 명확한 수화 클러스터는 높은 술폰화도에서만 형성되는 것이 관찰되었다. 또한, 술폰화 폴리이미드 모델은 저가습 상태에서 수화 채널을 형성하는데에 나피온 모델에 비하여 더 어렵다는 것이 관찰되었다. 이러한 결과들은 비과불화불소계인 탄화수소계 전해질막의 수화채널 형성에 대한 기존 이론을 명확하게 뒷받침하고 있으며, 술폰화 폴리이미드의 전도도 경향도 잘 설명을 하고 있다. 따라서 메조스케일 전산 모사 기술은 연료전지용 전해질막의 상분리 현상 및 수화채널을 분석하고 이온전도 특성을 규명하는 데에 있어서 매우 효과적인 기술이 될 수 있다는 것을 확인하였다.

The most important characteristic of the polymer electrolyte membranes (PEMs) for fuel cells, the proton conducting ability is mainly influenced by the distribution and morphology of the water channels inside the PEMs. Non-perfluorinated hydrocarbon PEMs are known to have weaker water channels than perfluorinated PEM, Nafion, and thus relatively low proton conducting ability. In this study, we used a mesoscale simulation technique to observe the water channel formation and phase separation behavior of hydrocarbon PEM, sulfonated polyimides, under the humidification condition. It was observed that the water molecules were distributed evenly through the entire hydrophilic region, and clear water clusters were formed only in the sulfonated polyimide having high sulfonation degree. In addition, it was observed that sulfonated polyimides have a difficulty in forming water channel under the low hydrated condition. These results clearly support the theories of the formation of water channels in non-perfluorinated hydrocarbon PEMs, and also well explain the tendency of proton conducting abilities of sulfonated polyimides. Thus, it is confirmed that mesoscale simulation techniques can be very effective in analyzing phase separation behavior and water channel formation in PEMs for fuel cells and elucidating the ion conducting abilities.

키워드

참고문헌

  1. P. J. Egan and M. Mullin, "Recent improvement and projected worsening of weather in the United States", Nature, 532, 357 (2016). https://doi.org/10.1038/nature17441
  2. S. L. Lewis, "The paris agreement has solved a troubling problem", Nature, 532, 283 (2016). https://doi.org/10.1038/532283a
  3. J. Watson, "Bring climate change back from the future", Nature, 534, 437 (2016). https://doi.org/10.1038/534437a
  4. O. Savadogo, "Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems", J. New Mater. Electrochem. Syst., 1, 47 (1998).
  5. B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345 (2001). https://doi.org/10.1038/35104620
  6. M. S. Whittingham and T. Zawodzinski, "Introduction: Batteries and fuel cells", Chem. Rev., 104, 4243 (2004). https://doi.org/10.1021/cr020705e
  7. J. Ahn and C. H. Lee, "Preparation and characterization of sulfonated poly(arylene ether sulfone) random copolymer reinforced membranes for fuel cells", Membr. J., 26, 146 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.146
  8. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  9. I. H. Kim, S. P. Kim, H. M. Lee, C. J. Park, J. W. Rhim, and S. I. Cheong, "Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA/THS-PSA for fuel cell applications", Membr. J., 21, 299 (2011).
  10. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", Membr. J., 20, 40 (2010).
  11. D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  12. K.-K. Lee, T.-H. Kim, T.-S. Hwang, and Y. T. Hong, "Novel sulfonated poly(arylene ether sulfone) composite membranes containing tetraethyl orthosilicate (TEOS) for PEMFC applications", Membr. J., 20, 278 (2010).
  13. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  14. C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016). https://doi.org/10.1038/nature17634
  15. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). https://doi.org/10.1021/cr020715f
  16. C. H. Park, T.-H. Kim, D. J. Kim, and S. Y. Nam, "Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membranes", Int. J. Hydrogen Energy, 42, 20895 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.146
  17. Y. Muranaka, A. Ueda, T. Nishida, and K. Soma, "Development of materials for mobile-use lithium- ion batteries and fuel cells", Hitachi Review, 55, 40 (2006).
  18. K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
  19. K. D. Kreuer, "Proton conductivity: Materials and applications", Chem. Mater., 8, 610 (1996). https://doi.org/10.1021/cm950192a
  20. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001). https://doi.org/10.1016/S0376-7388(00)00632-3
  21. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010). https://doi.org/10.1021/jp105708m
  22. C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329
  23. D. W. Shin, M. D. Guiver, and Y. M. Lee, "Hydrocarbon-Based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability", Chem. Rev., 117, 4759 (2017). https://doi.org/10.1021/acs.chemrev.6b00586
  24. K. D. Kreuer and G. Portale, "A critical revision of the nano morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications", Adv. Funct. Mater., 23, 5390 (2013). https://doi.org/10.1002/adfm.201300376
  25. B. Bae, T. Yoda, K. Miyatake, H. Uchida, and M. Watanabe, "Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature- operable fuel cells", Angew. Chem. Int. Ed., 49, 317 (2010). https://doi.org/10.1002/anie.200905355
  26. K. Schmidt-Rohr and Q. Chen, "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes", Nat. Mater., 7, 75 (2008). https://doi.org/10.1038/nmat2074
  27. T. J. Peckham, J. Schmeisser, M. Rodgers, and S. Holdcroft, "Main-chain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity", J. Mater. Chem., 17, 3255 (2007). https://doi.org/10.1039/b702339a
  28. C. H. Park and S. Y. Nam, "Mesoscale simulation of polymeric membranes for energy and environmental application", Membr. J., 27, 121 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.121
  29. J. T. Wescott, Y. Qi, L. Subramanian, and T. W. Capehart, "Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes", J. Chem. Phys., 124, 134702 (2006). https://doi.org/10.1063/1.2177649
  30. C.-Y. Jung, C.-H. Park, Y.-M. Lee, W.-J. Kim, and S.-C. Yi, "Numerical analysis of catalyst agglomerates and liquid water transport in proton exchange membrane fuel cells", Int. J. Hydrogen Energy, 35, 8433 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.035
  31. M. Kim, Y. Lee, J. Kim, H. Kim, T. Lim, and I. Moon, "Multiscale modeling and simulation of direct methanol fuel cell", Membr. J., 20, 29 (2010).
  32. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998). https://doi.org/10.1021/jp980939v
  33. H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 1 (2016). https://doi.org/10.1007/s00894-015-2876-x
  34. H. Sun, P. Ren, and J. Fried, "The COMPASS force field: Parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998). https://doi.org/10.1016/S1089-3156(98)00042-7
  35. "Material studio online help", Accelrys Software Inc., San Diego (2008).
  36. D. Y. Galperin and A. R. Khokhlov, "Mesoscopic morphology of proton-conducting polyelectrolyte membranes of nafion type: A self-consistent mean field simulation", Macromol. Theory Simul., 15, 137 (2006). https://doi.org/10.1002/mats.200500059
  37. Y.-H. Tang, Y.-D. He, and X.-L. Wang, "Three-dimensional analysis of membrane formation via thermally induced phase separation by dissipative particle dynamics simulation", J. Membr. Sci., 437, 40 (2013). https://doi.org/10.1016/j.memsci.2013.02.018
  38. R. Jorn and G. A. Voth, "Mesoscale simulation of proton transport in proton exchange membranes", J. Phys. Chem. C, 116, 10476 (2012). https://doi.org/10.1021/jp300040w
  39. C. H. Park, E. Tocci, E. Fontananova, M. A. Bahattab, S. A. Aljlil, and E. Drioli, "Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion", J. Membr. Sci., 514, 195 (2016). https://doi.org/10.1016/j.memsci.2016.04.011
  40. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-I. Kimijima, and N. Iwashita, "Scientific aspects of polymer electrolyte fuel cell durability and degradation", Chem. Rev., 107, 3904 (2007). https://doi.org/10.1021/cr050182l
  41. Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly(arylene ether sulfone) s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026 (2006). https://doi.org/10.1016/j.polymer.2006.02.032
  42. C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application", Ind. Eng. Chem. Res., 44, 7617 (2005). https://doi.org/10.1021/ie0501172