DOI QR코드

DOI QR Code

The Statistical Correlation Between Continuous Driving Time and Drowsy Accidents

연속주행시간과 졸음사고간 통계적 상관관계 분석

  • KIM, Ducknyung (Korea Expressway Corporation Research Institute) ;
  • KIM, Sujin (Department of Transportation Engineering, Myungji University) ;
  • CHOI, Jaeheon (Department of Transportation Engineering, Myungji University) ;
  • CHO, Jongseok (Korea Expressway Corporation Research Institute)
  • 김덕녕 (한국도로공사 도로교통연구원) ;
  • 김수진 (명지대학교 교통공학과) ;
  • 최재헌 (명지대학교 교통공학과) ;
  • 조종석 (한국도로공사 도로교통연구원)
  • Received : 2017.06.26
  • Accepted : 2017.09.27
  • Published : 2017.10.31

Abstract

During recent 5 years, it was recorded that 20% of total accident frequency and 30% of total number of death have been occurred due to drowsy driving. Drowsy driving accident is result from the loss of driving ability due to driver's accumulated fatigue. Continuous driving time can be measured as a surrogate variable to quantify the level of fatigue. The main purpose of this research is to investigate statistical correlation between the proportion of continuous driving vehicle (more than 2 hours) and the number of drowsy accidents. To carry this out, continuous driving time was measured using GPS route-guidance trajectory data. Also, accident frequency, traffic volume and segment length were collected to estimate safety performance function (SPF) for Jungbunearuk expressway in Korea. Through various types of estimated SPFs, statistical correlation was analyzed based on estimated statistical indices. This research can provide theoretical background for enforcement to regulate commercial vehicle driver's continuous driving time. In addition, throughout the trajectory data expansion, it is expected that strategy for anti-drowsy driving facilities installation can be established based on the suggested methodology.

최근 5년간 집계된 고속도로 교통사고자료에 따르면 전체 사고건수의 20%, 사망자수의 30%가 졸음운전으로 발생되고 있다. 졸음사고는 운전자의 피로도가 누적되었을 때 주행능력을 상실한 운전자의 인적 요인으로부터 발생되며, 정성적으로 체감되는 피로도는 운전자의 연속주행시간을 통해 간접적으로 분석될 수 있다. 본 연구는 2시간 이상 연속 주행한 차량의 비율과 해당 링크에서 집계된 졸음사고간의 통계적 상관관계를 규명하는데 주된 목적을 둔다. 이를 위해 네비게이션 주행 궤적 자료를 활용하여 링크별 연속주행차량의 비율을 산출하였으며, 중부내륙 고속도로의 링크별 졸음사고 건수, 교통량, 구간길이를 변수로 하는 안전성능함수를 추정하였다. 본 연구에서는 다양한 형태의 안전성능함수가 추정되었으며, 도출된 통계치의 비교를 통해 연속주행시간과 졸음사고 발생간의 통계적 상관성이 다각적으로 분석되었다. 본 연구결과는 최근 화물차 및 여객버스 운전자의 연속주행을 단속하는 제도에 학술적 근거를 제공할 수 있을 것으로 판단하며, 궤적자료의 양적 질적 확대를 통해 향후 졸음방지 시설물의 설치 위치를 결정하는 전략 수립에 활용 가능할 것으로 기대한다.

Keywords

References

  1. AASHTO (2010), Highway Safety Manual, American Association of State Highway and Transportation Officials, Washington, D.C.
  2. Beak S. K., Chang H. H., Kang J. G. (2005), Estimation of Freeway Traffic Accident Rate Using Traffic Volume and Trip Length, J. Korean Soc. Transp., 23(2), Korean Society of Transportation, 95-105.
  3. Brimley B. K., Saito M., Schultz G. G. (2012), Calibration of "Highway Safety Manual" Safety Performance Function: Development of New Models for Rural Two-lane Two-way Highways, In Transportation Research Record: Journal of the Transportation Research Board, 2279, 82-89. https://doi.org/10.3141/2279-10
  4. Brown I. D. (1997), Driver fatigue, Human factor, 36-2, 298-314.
  5. Geedipally S., Lord D., Park B. J. (2009), Analyzing Different Parameterizations of the Varying Dispersion Parameter as a Function of Segment Length, In Transportation Research Record: Journal of the Transportation Research Board, 2103, 108-118. https://doi.org/10.3141/2103-13
  6. Hauer E. (2001), Overdispersion in Modelling Accidents on Road Sections and in Empirical Bayes Estimation, Accident analysis and prevention, 33, 799-808. https://doi.org/10.1016/S0001-4575(00)00094-4
  7. Kang M. W., Son B. S., Dho C. U., Kang J. K. (2002), Development of Accident Prediction Models at Freeway Curve Section Based on Geometric Characteristics, Journal of Korean Society of Civil Engineering, 28(6-D), 1077-1088.
  8. Kim D. (2015), An Identification Method for Hazardous Roadway Locations Considering Varying Dispersion of Traffic Crashes, Seoul National University Ph.D. dissertation.
  9. Kim D., Kim D., Lee C. (2014), Safety Performance Functions Reflecting Categorical Impact of Exposure Variables for Freeways, In Transportation Research Record, Journal of the Transportation Research Board, 2398, 67-74.
  10. Korea Expressway Corporation Research Institute (2014), Expressway Safety Manual, Korea Expressway Corporation Research Institute (2014-03-326, 021).
  11. Korea Expressway Corporation Research Institute (2016), A Study on Reduction of Drowsy Driving by Expanding Break Time, Korea Expressway Corporation Research Institute (2016-49-534, 9607).
  12. Korea Transportation Safety Authority (2012), Research on Driving Time Limitation Policy for Commercial Vehicle.
  13. Korea Transportation Safety Authority (2013), Report on Survey and Analysis for Commercial Vehicle Driving.
  14. Lee S. C., Hwang Y. D., Oh J. S. (2008), The Effect of the Workload in the Truck Drivers' Fatigue, Korean Journal of Industrial and Organizational Psychology, 21(2), 367-381. https://doi.org/10.24230/ksiop.21.2.200805.367
  15. Lee S., Chang H., Cheon S., Baek S., Lee Y. (2016), Development of Traffic Accident Index Considering Driving Behavior of a Data Based, J. Korean Soc. Transp., 34(4), Korean Society of Transportation, 341-353. https://doi.org/10.7470/jkst.2016.34.4.341
  16. Mitra S., Washington S. (2007), On the Nature of Overdispersion in Motor Vehicle Crash Prediction Models, Accident Analysis and Prevention, 39(3), 459-468. https://doi.org/10.1016/j.aap.2006.08.002
  17. Olkin I., Gleser L. J., Derman C. (1980), Probability Models and Applications, MacMillan Publishing Co., Inc., New York, N.Y.
  18. STATA Corp. (2009), STATA version 11.0.
  19. Washington S. P., Karlaftis M. G., Mannering F. L. (2003), Statistical and Econometric Methods for Transportation Data Analysis, Chapman & Hall/CRC, Boca Raton, Florida.
  20. Yoon B. J. (2007), Development of Traffic Accident Forecasting Models for Trumpet IC Ramp Types of Freeway, Journal of Korean Society of civil engineering, 27(1-D), 81-87.