DOI QR코드

DOI QR Code

Changes in Inorganic Element Concentrations of Drained Nutrient Solution and Leaves in Compliance with Numerical Increment of Fruiting Node during Hydroponic Cultivation of Cherry Tomato

방울토마토 수경재배 시 착과 절위 증가에 따른 공급액, 배액 및 식물체의 무기성분 농도 변화

  • Lee, Eun Mo (Fruit Vegetable Research Institute, Chungcheongnam-do ARES) ;
  • Park, Sang Kyu (Fruit Vegetable Research Institute, Chungcheongnam-do ARES) ;
  • Kim, Gyoung Je (Fruit Vegetable Research Institute, Chungcheongnam-do ARES) ;
  • Lee, Bong Chun (Fruit Vegetable Research Institute, Chungcheongnam-do ARES) ;
  • Lee, Hee Chul (Fruit Vegetable Research Institute, Chungcheongnam-do ARES) ;
  • Yun, Yeo Uk (Division of Agricultural Environment) ;
  • Park, Soo Bok (Chung-oh Engineering Co. Ltd.) ;
  • Choi, Jong Myoung (Dept. of Horticultural Sciences, Chungnam Nat'l. Univ.)
  • 이은모 (충남농업기술원 과채연구소) ;
  • 박상규 (충남농업기술원 과채연구소) ;
  • 김경제 (충남농업기술원 과채연구소) ;
  • 이봉춘 (충남농업기술원 과채연구소) ;
  • 이희철 (충남농업기술원 과채연구소) ;
  • 윤여옥 (충남농업기술원 농업환경과) ;
  • 박수복 ((주)청오엔지니어링) ;
  • 최종명 (충남대학교 원예학과)
  • Received : 2017.09.08
  • Accepted : 2017.09.26
  • Published : 2017.10.31

Abstract

Production cost as well as environmental contamination can be reduced by reuse of drained nutrient solution in hydroponic. This research was conducted to obtain the information in changes in inorganic elements concentration of supplied and drained nutrient solution as well as of plant leaves. To achieve the objective, the samples of supplied and drained solution and cherry tomato leaf tissues were periodically collected and analyzed during the hydroponic cultivation. The electrical conductivity (EC) of supplied and drained nutrient solution in early growth stage of cherry tomato were measured as around $2.0dS{\cdot}m^{-1}$, but those values move up with the passage of time reaching to $2.0dS{\cdot}m^{-1}$ at flowering stage of 9th fruiting node. The pHs of drained solution in early growth stage were 6.4 to 6.7, however those showed a tendency to get lowered to 5.9 to 6.1 as time passed during the crop cultivation. The concentration differences of $NO_3-N$, P, K, Ca, and Mg between supplied and drained solution were not distinctive until flowering stages of 4th fruiting nodes, while those in drained solution moved up after the stage. The tissue N contents of leaves decrease gradually and those of K and Ca increased as crops grew. However, Tissue P and Mg contents were maintained similarly from transplant to end-crop. The above results would be used in correction of drained nutrient solution when element compositions are varied compared to supplied solution in hydroponic cultivation of tomatoes.

수경재배 시스템에 있어서 배액의 재활용은 생산비 절감 및 환경오염 방지를 위하여 중요하다. 방울토마토를 반촉성 수경재배 하면서 생육 단계별 공급액, 배액 및 잎의 무기성분 분석을 통하여 순환식 수경재배 시스템 개발을 위한 기초자료를 확보하고자 본 연구를 수행하였다. 연구목적을 달성하기 위해 주기적으로 공급액, 배액 및 식물체 잎을 채취한 후 무기물 함량을 분석하였다. 생육 초기에는 배액의 EC가 공급액과 비슷한 약 $2.0dS{\cdot}m^{-1}$였지만, 생육 후기로 갈수록 높아져 9화방 착과기에는 $4.5dS{\cdot}m^{-1}$였다. 영양생장이 왕성한 생육 초기의 pH는 6.4~6.7 범위였으나 생식생장이 강해진 생육 후기에는 5.9~6.1로 낮아지는 경향이었다. 생육 초기에는 공급액과 배액의 $NO_3-N$, P, K, Ca 및 Mg 농도가 비슷하였지만 생육 후기로 갈수록 공급액보다 배액의 농도가 높아지는 경향이었다. 생육 초기에 잎의 T-N 함량이 높았지만 후기로 갈수록 낮아지는 경향이었다. K와 Ca 함량은 생육 초기에는 낮았으나 후기로 갈수록 높았으며, P와 Mg 함량은 생육초기부터 후기까지 유사한 수준으로 분석되었다. 이상의 결과는 토마토 수경재배를 배액 재활용에 있어 무기원소 농도 변화를 교정하기 위한 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Bar-Yosef, B. 2008. Fertigation management and crops response to solution recycling in semi-closed greenhouse. p. 341-424. In: M. Raviv and J.H. Lieth (eds.). Soilless culture: theory and practice. Elsevier VB. Sandiego, CA. USA.
  2. Bellert, C., J. Le Bot. M. Dorais, J. Lopez, and A. Gosselin. 1998. Nitrogen accumulation and growth of fruiting tomato plants in hydroponics. Acta Hortic. 458:293-301.
  3. Benoit, F. 1992. Practical guide for simple soilless culture techniques. p.33. European Vegetable R&D center, Belgium.
  4. Bernard, J. 1991. Water treatment handbook. Lavoisier Publishing, Paris. p. 208-217.
  5. Kim, H.J, J.H. Kim, Y.H. Woo, W.S. Kim, and Y.I. Nam. 2001. Nutrient and water uptake of tomato plants by growth stage in closed perlite culture. J. Kor. Soc. Hort. Sci. 42:254-258.
  6. Lee, M.H., S.E. Kim, S.D. Lee, J.E. Lee, H.S. Kim, S.K. Cho, S.Y. Sim, and Y.S. Kim. 2016. Development of drainage water disinfection system by electric shock in recirculating soilless culture. Protected Horticulture and Plant Factory. 25:49-56. https://doi.org/10.12791/KSBEC.2016.25.1.49
  7. Lunt, O.R. and B. Clark. 1959. Bark and wood fragments. Forest Products J. April p. 39-42.
  8. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2016. 2015 Statistics of vegetable production under protected cultivation. p. 11.
  9. National Institute of Agricultural Science and Technology (NIAST). 2000. Methods of soil chemical analysis. RDA, Suwon, Korea.
  10. Ohtani, T., A. Kaneko, N. Fukuda, S. Hagiwara, and S. Sase, 2000. Development of a membrane disinfection system for closed hydroponics in a greenhouse. J. Agric. Engng. Res. 77:227-232. https://doi.org/10.1006/jaer.2000.0589
  11. Park, K.W. and Y.S. Kim. 1998. Hydroponics in horticulture, 1st ed. Academy Books, Seoul. p. 76-90.
  12. Rural Development Administration (RDA). 1999. Statistical data of soilless culture area in Korea.
  13. RDA. 2003. Manual for agriculture investigation. Suwon. p. 439-479.
  14. RDA. 2017. 2016 Statistical data of soilless culture area in Korea.
  15. Rhee, H.C., K.H. Kang, G.B. Kwon, Y.H. Choi, and H.T. Kim. 2003. Supplement method of drained solution in tomato cultivation using recycling systems. Journal of Bio-Environment Control 12:89-94.
  16. Roh, M.Y., Y.B. Lee, H.S. Kim, K.B. Lee, and J.H. Bae. 1997. Development of nutrient solution suitable for closed system in substrate culture of cucumber. Journal of Bio-Environment Control 6:1-14.
  17. Seo T.C., Y.C. Kim, J.W. Lee, H.K. Yun, and S.G. Lee. 2003. Optimal supply amount and strength of nutrient solution for ripe-harvesting tomatoes grown under perlite culture system of semi-forcing cropping. Kor. J. Hort. Sci. Technol. 21:79-85.
  18. Smith, D.L. 1997. Rockwool in horticulture. Grower Books. London. p. 35-27.
  19. Sonneveld, C. 1997. Hydroponic growing in closed system to safeguard the environment. Australia Conference Hydroponics, Melbourne. p. 21-36.
  20. Sonneveld, C. and W. Voogt. 2009. Plant nutrition of greenhouse crops. Springer. New York. p. 83-102.
  21. van Os, E.A. 1994. Closed growing systems for more efficient and environmental friendly production, Acta Hortic. 396:25-32.
  22. Wilcox, G.E. 1993. Tomato. p. 137-147. In: F.B. Bennett (eds.). Nutrient deficiencies and toxicities in crop plants. APS Press. St. Paul. MN. USA.
  23. Yun, H.K., X.R. Li, I.S. Kim, and K.C. Yoo. 2000. Physicochemical properties in the sand-based media. Inst. of Agr. Sci, Kangwon Nat'l. Univ. J. Agri. Sci. 11:12-19.
  24. Zhang, C.H., S.Y. Lim, H.M. Kang, and I.S. Kim. 2010a. Effect of nutrient solution concentration on the growth and quality of paprika grown by fertigation using waste nutrient solution. Kor. J. Hort. Sci. Technol. 28:46-50.
  25. Zhang, C.H., Z.H. Xu, H.M. Kang, and I.S. Kim. 2010b. Effect of waste nutrient solution and fertigation nutrient solution on the growth and qualities of tomato grown by fertigation. Kor. J. Hort. Sci. Technol. 28:574-579.