DOI QR코드

DOI QR Code

Unipolar pulse를 이용하여 형성된 Al6061 합금 표면의 MAO 코팅의 표면 구조에 대한 연구

Surface Morphological Properties of Micro-arc Oxidation Coating on Al6061 Alloys using Unipolar Pulse

  • Kim, Nam-youl (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Park, Seung-Ho (Point engineering CO., LTD) ;
  • Park, Ki-Youg (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jin-Sub (Department of Chemistry and Chemical Engineering, Inha University)
  • 투고 : 2017.09.15
  • 심사 : 2017.10.11
  • 발행 : 2017.10.31

초록

Herein, we investigated surface morphological characteristics of anodic films on Al6061 alloy prepared by unipolar pulsed Micro-arc oxidation (MAO) in a mixed solution of $Na_2SiO_3$ + KOH. The number and size of pores as well as craters on anodic alumina surface were studied as a function of different voltages, duty cycles and applied anodic current densities. The morphological characteristics of all samples were investigated by scanning electron microscopy, conforming that the most uniform surface morphology of MAO films on Al1050 alloy was obtained at high applied current density with low duty cycle.

키워드

참고문헌

  1. Shen D., Li G., Guo C., Zou J., Cai J., He D., Ma H. and Liu F., Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation, Appl. Surf. Sci. 287 (2013) 451-456. https://doi.org/10.1016/j.apsusc.2013.09.178
  2. Matykina E., Arrabal R., Pardo A., Mohedano M., Mingo B., Rodriguez I. and Gonzalez J., Energy-efficient PEO process of aluminium alloys, Mater Lett 127 (2014) 13-16. https://doi.org/10.1016/j.matlet.2014.04.077
  3. Hussein R., Northwood D. and Nie X., The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys, Surf. Coat. Technol. 237 (2013) 357-368. https://doi.org/10.1016/j.surfcoat.2013.09.021
  4. Dehnavi V., Shoesmith D. W., Luan B. L., Yari M., Liu X. Y. and Rohani S., Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy-The effect of the PEO process stage, Mater. Chem. Phys. 161 (2015) 49-58. https://doi.org/10.1016/j.matchemphys.2015.04.058
  5. Bae-Yeon Kim, Deuk Yong Lee, Min Chul Shin, Hyun-Gyoo Shin, Byeong-Kon Kim, Sung Youp Kim, and Kwang Youp Kim, Effect of Al Alloy Composition on Physical and Crystallographical Properties of Plasma Electrolytic Oxidized Coatings II. Crystallographic Analysis of PEO Layer, J. Korean Ceram. Soc. 47 (2010) 283-289. https://doi.org/10.4191/KCERS.2010.47.4.283
  6. Al Bosta M. M. and Ma K., Influence of electrolyte temperature on properties and infrared emissivity of MAO ceramic coating on 6061 aluminum alloy, Infrared Phys. Technol. 67 (2014) 63-72. https://doi.org/10.1016/j.infrared.2014.07.009
  7. Nie X., Meletis E., Jiang J., Leyland A., Yerokhin A. and Matthews A., Abrasive wear/corrosion properties and TEM analysis of al 2 O 3 coatings fabricated using plasma electrolysis, Surf. Coat. Technol. 149 (2002) 245-251. https://doi.org/10.1016/S0257-8972(01)01453-0
  8. Wu H., Wang J., Long B., Long B., Jin Z., Naidan W., Yu F. and Bi D., Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy, Appl. Surf. Sci. 252 (2005) 1545-1552. https://doi.org/10.1016/j.apsusc.2005.02.124
  9. Dehnavi V., Luan B. L., Shoesmith D. W., Liu X. Y. and Rohani S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior, Surf. Coat. Technol. 226 (2013) 100-107. https://doi.org/10.1016/j.surfcoat.2013.03.041
  10. Wei T., Yan F. and Tian J., Characterization and wear-and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy, J. Alloys Compounds 389 (2005) 169-176. https://doi.org/10.1016/j.jallcom.2004.05.084
  11. Dehnavi V., Liu X. Y., Luan B. L., Shoesmith D. W. and Rohani S., Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy, Surf. Coat. Technol. 251 (2014) 106-114. https://doi.org/10.1016/j.surfcoat.2014.04.010
  12. Kossenko A. and Zinigrad M., A universal electrolyte for the plasma electrolytic oxidation of aluminum and magnesium alloys, Mater Des 88 (2015) 302-309. https://doi.org/10.1016/j.matdes.2015.08.071
  13. Stojadinovic S., Vasilic R., Radic-Peric J. and Peric M., Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride, Surf. Coat. Technol. 273 (2015) 1-11. https://doi.org/10.1016/j.surfcoat.2015.03.032
  14. Wang L., Chen L., Yan Z., Wang H. and Peng J., Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy, J. Alloys Compounds 480 (2009) 469-474. https://doi.org/10.1016/j.jallcom.2009.01.102
  15. Yeh S., Tsai D., Wang J. and Chou C., Coloration of the aluminum alloy surface with dye emulsions while growing a plasma electrolytic oxide layer, Surf. Coat. Technol. 287 (2016) 61-66. https://doi.org/10.1016/j.surfcoat.2015.12.091
  16. Li L., Narayanan, Tirunelveli Sankaranarayanan Nellaiappan Sankara, Kim Y. K., Kong Y., Shin G., Lyu S., Park I. S. and Lee M. H., Coloring and corrosion resistance of pure mg modified by micro-arc oxidation method, INT. J. PRECIS. ENG. MAN. 15 (2014) 1625-1630. https://doi.org/10.1007/s12541-014-0512-9
  17. Hussein R., Northwood D. and Nie X., The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy, J. Alloys Compounds 541 (2012) 41-48. https://doi.org/10.1016/j.jallcom.2012.07.003
  18. Guangliang Y., Xianyi L., Yizhen B., Haifeng C. and Zengsun J., The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating, J. Alloys Compounds 345 (2002) 196-200. https://doi.org/10.1016/S0925-8388(02)00289-X
  19. Zhuang J., Song R., Xiang N., Lu J. and Xiong Y., Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy, Int. J. Mater. Res. (2017).
  20. Arunnellaiappan T., Ashfaq M., Krishna L. R. and Rameshbabu N., Fabrication of corrosion-resistant al 2 O 3-CeO 2 composite coating on AA7075 via plasma electrolytic oxidation coupled with electrophoretic deposition, Ceram. Int. 42 (2016) 5897-5905. https://doi.org/10.1016/j.ceramint.2015.12.136
  21. White L., Koo Y., Neralla S., Sankar J. and Yun Y., Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO), Mater.Sci.Eng.B:. 208 (2016) 39-46. https://doi.org/10.1016/j.mseb.2016.02.005
  22. Barati N., Yerokhin A., Golestanifard F., Rastegari S. and Meletis E. I., Alumina-zirconia coatings produced by plasma electrolytic oxidation on al alloy for corrosion resistance improvement, J. Alloys Compounds 724 (2017) 435-442. https://doi.org/10.1016/j.jallcom.2017.07.058
  23. Yerokhin A., Shatrov A., Samsonov V., Shashkov P., Pilkington A., Leyland A. and Matthews A., Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process, Surf. Coat. Technol. 199 (2005) 150-157. https://doi.org/10.1016/j.surfcoat.2004.10.147
  24. Krzakala A., Kazek-Kesik A. and Simka W., Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys, RSC Advances 3 (2013) 19725-19743. https://doi.org/10.1039/c3ra43465f
  25. Lukiyanchuk I., Rudnev V. and Tyrina L., Plasma electrolytic oxide layers as promising systems for catalysis, Surf. Coat. Technol. 307 (2016) 1183-1193. https://doi.org/10.1016/j.surfcoat.2016.06.076
  26. Jung-Hyung Lee , Seong-Jong Kim, Influences of Potassium Fluoride (KF) Addition on the Surface Characteristics in Plasma Electrolytic Oxidation of Marine Grade Al Alloy , J. Korean Inst. Surf 49 (2016) 280-285. https://doi.org/10.5695/JKISE.2016.49.3.280