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CERTAIN CURVATURE CONDITIONS IN KENMOTSU

MANIFOLDS WITH RESPECT TO THE SEMI-SYMMETRIC

METRIC CONNECTION

Abdul Haseeb and Rajendra Prasad

Abstract. The conharmonic curvature tensor under certain conditions
has been studied for Kenmotsu manifolds with respect to the semi-sym-

metric metric connection.

1. Introduction

In 1969, S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension [17]. For such a mani-
fold, the sectional curvature of plane sections containing ξ is a constant, say c.
He showed that they can be divided into three classes: (1) homogeneous normal
contact Riemannian manifolds with c > 0, (2) global Riemannian products of
a line or a circle with a Kaehler manifold of constant holomorphic sectional
curvature if c = 0 and (3) a warped product space R×fC if c > 0. It is known
that the manifolds of class (1) are characterized by admitting a Sasakian struc-
ture. K. Kenmotsu [13] characterized the differential geometric properties of
the manifolds of class (3); the structure obtained in this way is now known as
Kenmotsu structure. In general, these structures are not Sasakian [13]. Ken-
motsu manifolds have been studied by various authors such as N. Asghari and
A. Taleshian [3], A. Barman and U. C. De [5], U. C. De and G. Pathak [7], A.
Yildiz and U. C. De [20] and many others.

In 1924, the idea of semi-symmetric linear connection on a differentiable
manifold was introduced by A. Friedmann and J. A. Schouten [8]. Then in 1932,
H. A. Hayden [10] introduced semi-symmetric metric connection in Riemannian
manifolds and this was studied systematically by K. Yano [18].

The paper is organized as follows: Section 2 is equipped with some prerequi-
sites about Kenmotsu manifolds. In Section 3, we give the relation between the
curvature tensor of Kenmotsu manifolds and related results with respect to the
semi-symmetric metric connection and the Levi-Civita connection. In Section
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4, we showed that a conharmonically flat η-Einstein Kenmotsu manifold with
respect to the semi-symmetric metric connection is of quasi-constant curvature.
Section 5 deals with the study of φ-conharmonically semi-symmetric η-Einstein
Kenmotsu manifolds with respect to the semi-symmetric metric connection. In
Section 6, we study conharmonically flat Kenmotsu manifolds satisfying the
curvature condition R̄(X,Y ) · S̄ = 0. In the last Section 7, we obtain the
non-existence of Kenmotsu manifolds whose curvature tensor of manifold is co-
variantly constant with respect to the semi-symmetric metric connection and
the manifold is recurrent with respect to the Levi-Civita connection.

2. Kenmotsu manifolds

A smooth manifold (Mn, g) (n = 2m + 1) is said to be an almost contact
metric manifold [13] if it admits a (1, 1)-tensor field φ, a vector field ξ, a 1-form
η and a Riemannian metric g which satisfy

(1) φ2X = −X + η(X)ξ,

(2) g(X, ξ) = η(X), η(ξ) = 1, φξ = 0, η(φX) = 0,

(3) g(φX, φY ) = g(X,Y )− η(X)η(Y )

for all vector fields X,Y on M .
An almost contact metric manifold Mn(φ, ξ, η, g) is said to be a Kenmotsu

manifold if the following conditions hold:

(4) (∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX,

(5) ∇Xξ = X − η(X)ξ,

where ∇ is the Levi-Civita connection.
In a Kenmotsu manifold the following relations hold [12,13,15]:

(6) (∇Xη)Y = g(X,Y )− η(X)η(Y ),

(7) R(X,Y )ξ = η(X)Y − η(Y )X,

(8) R(ξ,X)Y = −R(X, ξ)Y = η(Y )X − g(X,Y )ξ,

(9) η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X),

(10) S(X, ξ) = −(n− 1)η(X), Qξ = −(n− 1)ξ

for arbitrary vector fields X,Y, Z on M and R is the Riemannian curvature
tensor and S is the Ricci tensor of type (0,2) such that g(QX,Y ) = S(X,Y ).

A linear connection ∇̄ in a Riemannian manifold M is said to be a semi-
symmetric connection [9, 14] if its torsion tensor T of the connection ∇̄

(11) T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ]
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satisfies

(12) T (X,Y ) = η(Y )X − η(X)Y,

where η is a 1-form and ξ is a vector field given by

(13) g(X, ξ) = η(X)

for all vector fields X,Y ∈ χ(M). Here χ(M) is the set of all differentiable
vector fields on M .

A semi-symmetric connection ∇̄ is called a semi-symmetric metric connec-
tion [6, 8] if it further satisfies

(14) ∇̄g = 0.

A relation between the semi-symmetric metric connection ∇̄ and the Levi-
Civita connection ∇ on M has been obtained by K. Yano [18], which is given
by

(15) ∇̄XY = ∇XY + η(Y )X − g(X,Y )ξ,

where η(Y ) = g(Y, ξ).

3. Curvature tensor of a Kenmotsu manifold with respect to the
semi-symmetric metric connection

LetR and R̄, respectively, be the curvature tensors of the Levi-Civita connec-
tion ∇ and the semi-symmetric metric connection ∇̄ in a Kenmotsu manifold
M . Then we have [4]

(16)
R̄(X,Y )Z = R(X,Y )Z − 3g(Y,Z)X + 3g(X,Z)Y + 2η(Y )η(Z)X

− 2η(X)η(Z)Y + 2g(Y,Z)η(X)ξ − 2g(X,Z)η(Y )ξ,

(17) η(R̄(X,Y )Z) = 2g(X,Z)η(Y )− 2g(Y, Z)η(X),

(18) R̄(X,Y )ξ = 2η(X)Y − 2η(Y )X,

(19) R̄(X, ξ)Y = 2g(X,Y )ξ − 2η(Y )X,

(20) R̄(ξ,X)ξ = 2X − 2η(X)ξ,

(21) S̄(Y,Z) = S(Y,Z)− (3n− 5)g(Y,Z) + 2(n− 2)η(Y )η(Z),

(22) S̄(φY, φZ) = S̄(Y, Z) + 2(n− 1)η(Y )η(Z),

(23) S̄(Y, ξ) = −2(n− 1)η(Y ), S̄(ξ, ξ) = −2(n− 1),

(24) Q̄Y = QY − (3n− 5)Y + 2(n− 2)η(Y )ξ,

(25) Q̄ξ = −2(n− 1)ξ,

(26) r̄ = r − 3n2 + 7n− 4,
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(27) ∇̄Xξ = 2X − 2η(X)ξ

for any vector fields X,Y, Z on M .

Definition. A Kenmotsu manifold M is called a manifold of quasi-constant
curvature with respect to the semi-symmetric metric connection if the curvature
tensor R̄ of type (0, 4) satisfies the condition

(28)

R̄(X,Y, Z,W ) = a[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+ b[g(X,W )T (Y )T (Z)− g(X,Z)T (Y )T (W )

+ g(Y, Z)T (X)T (W )− g(Y,W )T (X)T (Z)],

where R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ), R̄ is the curvature tensor of type
(1, 3); a, b are the scalar functions and ρ is a unit vector field defined by

(29) g(X, ρ) = T (X)

for any vector fields X,Y, Z,W on M .

Definition. A Kenmotsu manifold M is said to be an η-Einstein manifold with
respect to the semi-symmetric metric connection if its Ricci tensor S̄ of type
(0, 2) satisfies

(30) S̄(X,Y ) = αg(X,Y ) + βη(X)η(Y ),

where α and β are smooth functions on M . In particular, if β = 0, then an
η-Einstein manifold is an Einstein manifold.

Contracting (30), we have

(31) r̄ = nα+ β.

On the other hand, putting X = Y = ξ in (30) and using (23), we also have

(32) −2(n− 1) = α+ β.

Hence it follows from (31) and (32) that

α = 2 +
r̄

n− 1
, β = −2n− r̄

n− 1
.

So the Ricci tensor S̄ of an η-Einstein Kenmotsu manifold with respect to the
semi-symmetric metric connection is given by

(33) S̄(X,Y ) = (2 +
r̄

n− 1
)g(X,Y )− (2n+

r̄

n− 1
)η(X)η(Y ),

from which we have

(34) Q̄X = (2 +
r̄

n− 1
)X − (2n+

r̄

n− 1
)η(X)ξ.

Now, we give an example of Kenmotsu manifold which is an η-Einstein
manifold with respect to the semi-symmetric metric connection.
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Example. We consider a 7-dimensional Kenmotsu manifold with respect to the
semi-symmetric metric connection M7 =

{
(x1, x2, x3, y1, y2, y3, z)∈R7 : z > 0

}
,

where (x1, x2, x3, y1, y2, y3, z) are the standard coordinates in R7. We choose
the vector fields

e1 = e−z
∂

∂x1
, e2 = e−z

∂

∂x2
, e3 = e−z

∂

∂x3
, e4 = e−z

∂

∂y1
,

e5 = e−z
∂

∂y2
, e6 = e−z

∂

∂y3
, e7 =

∂

∂z

which are linearly independent at each point of M7. Let g be the Riemannian
metric on M7 defined by

g =

3∑
i=1

e2z(dxi ⊗ dxi + dyi ⊗ dyi) + dz ⊗ dz.

Here it is clear that g(ei, ei) = 1 and g(ei, ej) = 0 for all i 6= j, where i, j =
1, 2, 3, 4, 5, 6, 7. Hence {e1, e2, e3, e4, e5, e6, e7} is an orthonormal base field on
M7.

Let X =
∑3
i=1(Xi

∂
∂xi

+ Yi
∂
∂yi

) + Z ∂
∂z be a vector field on M7. We define a

(1, 1) tensor field φ and 1-form η as

φ

(
3∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z

)
=

3∑
i=1

(Yi
∂

∂xi
−Xi

∂

∂yi
)

and η(X) = g(X, e7) = dz(X). Thus we have

φ(e1) = e4, φ(e2) = e5, φ(e3) = e6, φ(e4) = −e1,
φ(e5) = −e2, φ(e6) = −e3, φ(e7) = 0.

The linearity property of φ and g yields that

η(e7) = g(e7, e7) = 1, φ2X = −X + η(X)e7,

g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X,Y on M7. Let us denote e7 by ξ, then M7(φ, ξ, η, g)
defines an almost contact metric manifold.

The Koszul’s formula for the Riemannian connection ∇ of the Riemannian
metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

+ g([X,Y ], Z)− g([Y,Z], X) + g([Z,X], Y )

for any vector fields X,Y, Z on M7.
Using the Koszul’s formula, for any vector fields X,Y, Z on M7, we have

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX

which proves that M7(φ, ξ, η, g) is a Kenmotsu manifold. Moreover, we have

[ei, ξ] = ei, [ei, ej ] = 0, i 6= j, i, j = 1, 2, 3, 4, 5, 6.
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Using the Koszul’s formula, we also obtain

(35) ∇eiei = −ξ, ∇eiej = 0 for i 6= j,

∇eiξ = ei, ∇ξei = 0, i, j = 1, 2, 3, 4, 5, 6.

Therefore the semi-symmetric metric connection ∇̄ on M7 is given by

(36) ∇̄eiei = −2ξ, ∇̄eiej = 0 for i 6= j,

∇̄eiξ = 2ei, ∇̄ξei = 0, i, j = 1, 2, 3, 4, 5, 6.

With help of results given in (35), it can be easily verified that

(37) R(ei, ej)ek = 0 for i 6= j 6= k, R(ei, ej)ei = ej for i 6= j,

R(ei, ej)ej = −ei fori 6= j, R(ei, ei)ej = 0 for i 6= j,

R(ei, ξ)ej = 0 for i 6= j, R(ξ, ej)ξ = ej , R(ei, ξ)ei = ξ, R(ξ, ei)ei = −ξ,
R(ei, ξ)ξ = −ei, R(ei, ej)ξ = 0 for i 6= j, i, j, k = 1, 2, 3, 4, 5, 6.

From above results in (37) and the equations (16), (18)-(20), we have

(38) R̄(ei, ej)ek = 0 for i 6= j 6= k, R̄(ei, ej)ei = 4ej for i 6= j,

R̄(ei, ej)ej = −4ei for i 6= j, R̄(ei, ei)ej = 0 for i 6= j,

R̄(ei, ξ)ej = 0 for i 6= j, R̄(ξ, ei)ξ = 2ei, R̄(ei, ξ)ei = 2ξ,

R̄(ξ, ei)ei = −2ξ, R̄(ei, ξ)ξ = −2ei,

R̄(ei, ej)ξ = 0 for i 6= j, i, j, k = 1, 2, 3, 4, 5, 6.

We know that

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Let

X =

7∑
i=1

Xiei, Y =

7∑
i=1

Yiei, and Z =

7∑
i=1

Ziei, where e7 = ξ.

Then using (37), we get

(39) R(X,Y )Z = −[g(Y,Z)X − g(X,Z)Y ].

So, M7 is a manifold of constant curvature −1. Contracting X in (39), we get

(40) S(Y,Z) = −(n− 1)g(Y,Z).

For the manifold M7, we have

(41) S(Y,Z) = −6g(Y,Z)

which yields

(42) QY = −6Y.

For the manifold M7 with respect to the semi-symmetric metric connection,
we also have

(43) R̄(X,Y )Z = −4[g(Y,Z)X − g(X,Z)Y ] + 2η(Y )η(Z)X − 2η(X)η(Z)Y

+2g(Y,Z)η(X)ξ − 2g(X,Z)η(Y )ξ
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and

(44) S̄(Y, Z) = −22g(Y,Z) + 10η(Y )η(Z).

Thus the manifold is an η-Einstein manifold with respect to the semi-symmetric
metric connection.

4. Conharmonically flat η-Einstein Kenmotsu manifolds with
respect to the semi-symmetric metric connection

Definition. The conharmonic curvature tensor C of type (1, 3) in a Riemann-
ian manifold M of dimension n is defined by [2, 11]

(45)
C(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y,Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ]

for any vector fields X,Y, Z ∈ χ(M). In the differential geometry of certain
F -structures (for example, complex, almost complex, Kahler, almost Kahler,
Hermitian, almost Hermitian structures, etc.), the importance of conharmonic
curvature tensor is very well known [19]. While the relativistic significance of
this tensor has been explored by Z. Ahsan [1] and S. A. Siddiqui and Z. Ahsan
[16].

Analogous to the above definition, we define the conharmonic curvature
tensor C̄ in a Kenmotsu manifold M with respect to the semi-symmetric metric
connection ∇̄ by

(46)
C̄(X,Y )Z = R̄(X,Y )Z − 1

(n− 2)
[S̄(Y,Z)X − S̄(X,Z)Y

+ g(Y,Z)Q̄X − g(X,Z)Q̄Y ],

where R̄, S̄ are the curvature tensor, the Ricci tensor respectively on M with
respect to the semi-symmetric metric connection and Q̄ is the Ricci opera-
tor with respect to the semi-symmetric metric connection and is related by
g(Q̄X, Y ) = S̄(X,Y ). If C̄ vanishes identically on M , then we say that the
manifold is conharmonically flat.

Now, we consider that the manifold M with respect to the semi-symmetric
metric connection is conharmonically flat, that is, C̄ = 0. Then from (46), we
have

(47) R̄(X,Y )Z =
1

(n− 2)
[S̄(Y,Z)X− S̄(X,Z)Y + g(Y,Z)Q̄X− g(X,Z)Q̄Y ].

Taking inner product of (47) with W , we have

(48)
g(R̄(X,Y )Z,W ) =

1

(n− 2)
[S̄(Y,Z)g(X,W )− S̄(X,Z)g(Y,W )

+ g(Y, Z)S̄(X,W )− g(X,Z)S̄(Y,W )].
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By using (33), (48) becomes

(49)

g(R̄(X,Y )Z,W ) =
1

(n− 2)
[(4 +

2r̄

n− 1
)g(Y,Z)g(X,W )

− (2n+
r̄

n− 1
)η(Y )η(Z)g(X,W )

− (4 +
2r̄

n− 1
)g(X,Z)g(Y,W )

+ (2n+
r̄

n− 1
)η(X)η(Z)g(Y,W )

− (2n+
r̄

n− 1
)η(X)η(W )g(Y, Z)

+ (2n+
r̄

n− 1
)η(Y )η(W )g(X,Z)]

or,

g(R̄(X,Y )Z,W ) =
1

(n− 2)
(4 +

2r̄

n− 1
)[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

− 1

(n− 2)
(2n+

r̄

n− 1
)[g(X,W )η(Y )η(Z)(50)

− g(X,Z)η(Y )η(W ) + g(Y, Z)η(X)η(W )

− g(Y,W )η(X)η(Z)].

Thus we can state the following theorem:

Theorem 4.1. An n-dimensional conharmonically flat η-Einstein Kenmotsu
manifold with respect to the semi-symmetric metric connection is of quasi-
constant curvature.

Next, putting X = ξ in (48) and using (2) and (33), we have

(51) g(R̄(ξ, Y )Z,W ) =
1

(n− 2)
(4 +

r̄

n− 1
− 2n)[g(Y, Z)η(W )− g(Y,W )η(Z)]

which in view of (19) reduces to

(52)
r̄

n− 1
[g(Y,Z)η(W )− g(Y,W )η(Z)] = 0.

This shows that either r̄ = 0 or,

(53)
g(Y,Z)η(W ) = g(Y,W )η(Z)

=⇒ g(Y,Z)ξ = η(Z)Y for all Y,Z ∈ χ(M)

which is not possible. Thus we can state the following theorem:

Theorem 4.2. In an n-dimensional conharmonically flat η-Einstein Kenmotsu
manifold with respect to the semi-symmetric metric connection the scalar cur-
vature vanishes.
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5. φ-conharmonically semisymmetric η-Einstein Kenmotsu
manifolds with respect to the semi-symmetric metric connection

Definition. An η-Einstein Kenmotsu manifold (Mn, g), n > 1 is said to be
φ-conharmonically semisymmetric with respect to the semi-symmetric metric
connection if

(54) C̄(X,Y ) · φ = 0

for all X,Y ∈ χ(M).

Now, let M be an n-dimensional φ-conharmonically semisymmetric η-Ein-
stein Kenmotsu manifold with respect to the semi-symmetric metric connec-
tion. Therefore C̄(X,Y ).φ = 0 turns into

(55) (C̄(X,Y ) · φ)Z = C̄(X,Y )φZ − φC̄(X,Y )Z = 0

for any vector fields X,Y, Z on M . From (46), we have

(56)
C̄(X,Y )φZ = R̄(X,Y )φZ − 1

(n− 2)
[S̄(Y, φZ)X − S̄(X,φZ)Y

+ g(Y, φZ)Q̄X − g(X,φZ)Q̄Y ].

By using (16), (33) and (34), (56) takes the form

C̄(X,Y )φZ = R(X,Y )φZ − 3g(Y, φZ)X + 3g(X,φZ)Y

+ 2g(Y, φZ)η(X)ξ − 2g(X,φZ)η(Y )ξ

− 1

(n− 2)
[(4 +

2r̄

n− 1
)g(Y, φZ)X − (4 +

2r̄

n− 1
)g(X,φZ)Y(57)

− (2n+
r̄

n− 1
)g(Y, φZ)η(X)ξ + (2n+

r̄

n− 1
)g(X,φZ)η(Y )ξ].

We also have

φC̄(X,Y )Z = φR(X,Y )Z − 3g(Y,Z)φX + 3g(X,Z)φY

+ 2η(Y )η(Z)φX − 2η(X)η(Z)φY

− 1

(n− 2)
[(4 +

2r̄

n− 1
)g(Y,Z)φX − (4 +

2r̄

n− 1
)g(X,Z)φY(58)

+ (2n+
r̄

n− 1
)η(X)η(Z)φY − (2n+

r̄

n− 1
)η(Y )η(Z)φX].

From (55), (57) and (58), we have

(59)

(
2r̄

n− 1
+ 4n− 4)g(X,φZ)Y − (

2r̄

n− 1
+ 4n− 4)g(Y, φZ)X

+ (
r̄

n− 1
+ 4n− 4)g(Y, φZ)η(X)ξ − (

r̄

n− 1
+ 4n− 4)g(X,φZ)η(Y )ξ

− (
2r̄

n− 1
+ 4n− 4)g(X,Z)φY + (

2r̄

n− 1
+ 4n− 4)g(Y,Z)φX

− (
r̄

n− 1
+ 4n− 4)η(Y )η(Z)φX + (

r̄

n− 1
+ 4n− 4)η(X)η(Z)φY = 0
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which by taking Y = ξ and then using (2) reduces to

(60)
r̄

n− 1
(g(X,φZ)ξ + η(Z)φX) = 0.

By operating φ on (60) and using (2), we get

r̄

n− 1
φ2X = 0.

Since φ2X = 0 is not possible for all X. So we get r̄ = 0. Thus we can state
the following theorem:

Theorem 5.1. In an n-dimensional φ-conharmonically semisymmetric η-Ein-
stein Kenmotsu manifold with respect to the semi-symmetric metric connection,
the scalar curvature vanishes.

6. Conharmonically flat Kenmotsu manifolds with respect to the
semi-symmetric metric connection satisfying the curvature

condition R̄ · S̄ = 0

In this section we consider the conharmonically flat Kenmotsu manifolds
with respect to the semi-symmetric metric connection ∇̄ satisfying the curva-
ture condition

(61) R̄(X,Y ) · S̄ = 0.

Then we have

(62) S̄(R̄(X,Y )Z,W ) + S̄(Z, R̄(X,Y )W ) = 0

for all vector fields X,Y, Z,W ∈ χ(M).
Using (47) in (62), we have

(63)
g(Y, Z)S̄(Q̄X,W )− g(X,Z)S̄(Q̄Y,W )

+ g(Y,W )S̄(Q̄X,Z)− g(X,W )S̄(Q̄Y, Z) = 0

which by replacing Y = Z = ξ and then using (2), (23) and (25) takes the form

(64) S̄(Q̄X,W )−4(n−1)2η(X)η(W )+η(W )S̄(Q̄X, ξ)−4(n−1)2g(X,W ) = 0.

Let λ be the eigenvalue of the endomorphism Q̄ corresponding to an eigenvector
X. Then

(65) Q̄X = λX.

Using (65) in (64), we have

(66) λS̄(X,W )− [4(n− 1)2 + 2(n− 1)λ]η(X)η(W )− 4(n− 1)2g(X,W ) = 0.

By putting W = ξ in (66), we get

(67) [λ2 − 2(n− 1)λ− 8(n− 1)2]η(X) = 0.

This gives

(68) λ2 − 2(n− 1)λ− 8(n− 1)2 = 0 as η(X) 6= 0.
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Thus we can state the following theorem:

Theorem 6.1. If an n-dimensional (n ≥ 3) conharmonically flat Kenmotsu
manifold with respect to the semi-symmetric metric connection with non zero
Ricci tensor S̄ satisfying the curvature condition R̄(X,Y ) · S̄ = 0, then the
symmetric endomorphism Q̄ of the tangent space corresponding to S̄ has two
different non-zero eigenvalues, namely, 4(n− 1) and −2(n− 1).

7. Non-existence of Kenmotsu manifolds whose curvature tensor
of manifold is covariantly constant with respect to the
semi-symmetric metric connection and M is recurrent

with respect to the Levi-Civita connection

Definition. A Kenmotsu manifold M with respect to the Levi-Civita connec-
tion is called the recurrent, if its curvature tensor R satisfies the condition

(69) (∇WR)(X,Y )Z = A(W )R(X,Y )Z,

where A is the 1-form.

From (15), we can write

(70)

(∇̄WR)(X,Y )Z = ∇̄WR(X,Y )Z −R(∇̄WX,Y )Z −R(X, ∇̄WY )Z,

−R(X,Y )∇̄WZ = (∇WR)(X,Y )Z + η(R(X,Y )Z)W

− g(W,R(X,Y )Z)ξ − η(X)R(W,Y )Z

− η(Y )R(X,W )Z − η(Z)R(X,Y )W

+ g(X,W )R(ξ, Y )Z + g(Y,W )R(X, ξ)Z

+R(W,Z)R(X,Y )ξ

which on using (7)-(9) reduces to
(71)
(∇̄WR)(X,Y )Z = (∇WR)(X,Y )Z + η(X)[g(W,Y )Z − g(Z, Y )W

− g(W,Z)Y ] + η(Y )[g(W,Z)X − g(W,X)Z + g(Z,X)W ].

Let (∇̄WR)(X,Y )Z = 0, then from (71), it follows that

(72)
(∇WR)(X,Y )Z + η(X)[g(W,Y )Z − g(Z, Y )W − g(W,Z)Y ]

+ η(Y )[g(W,Z)X − g(W,X)Z + g(Z,X)W ] = 0.

Now using (69) in (72), we have

(73)
A(W )R(X,Y )Z + η(X)[g(W,Y )Z − g(Z, Y )W − g(W,Z)Y ]

+ η(Y )[g(W,Z)X − g(W,X)Z + g(Z,X)W ] = 0.

Contracting X in (73), we get

(74) A(W )S(Y,Z) + g(W,Y )η(Z)− g(Z, Y )η(W ) + (n− 1)g(W,Z)η(Y ) = 0.

Now considering Y = ξ in (74) and using (2), we get

(75) A(W )η(Z)− g(W,Z) = 0.
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Suppose the associated 1-form A is equal to the associated 1-form η, then from
(75), we have

(76) g(W,Z) = η(W )η(Z).

Therefore in view of (3), we get g(φW,φZ) = 0, which is not possible.
Thus we can state the following theorem:

Theorem 7.1. There is no Kenmotsu manifold whose curvature tensor of man-
ifold is covariantly constant with respect to the semi-symmetric metric connec-
tion and the manifold is recurrrent with respect to the Levi-Civita connection
and the associated 1-form A is equal to the associated 1-form η.

Acknowledgement. The authors are thankful to the referees for their valu-
able suggestions towards the improvement of the paper.
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