
Commun. Korean Math. Soc. 32 (2017), No. 4, pp. 991–997

https://doi.org/10.4134/CKMS.c170016

pISSN: 1225-1763 / eISSN: 2234-3024

THE GEOMETRY OF Ls(
3l2∞)

Sung Guen Kim

Abstract. We classify the extreme, exposed and smooth symmetric 3-

linear forms of the unit ball of Ls(3l2∞), respectively.

1. Introduction

We write BE for the closed unit ball of a real Banach space E and the
dual space of E is denoted by E∗. x ∈ BE is called an extreme point of BE if
y, z ∈ BE with x = 1

2 (y + z) implies x = y = z. x ∈ BE is called an exposed
point of BE if there is a f ∈ E∗ so that f(x) = 1 = ‖f‖ and f(y) < 1 for
every y ∈ BE \ {x}. x ∈ BE is called a smooth point of BE if there is a unique
f ∈ E∗ so that f(x) = 1 = ‖f‖. It is easy to see that every exposed point of
BE is an extreme point. We denote by extBE , expBE and smBE the sets of
extreme, exposed and smooth points of BE , respectively. Let n ∈ N, n ≥ 2. A
mapping P : E → R is a continuous n-homogeneous polynomial if there exists
a unique continuous symmetric n-linear form L on the product E × E such
that P (x) = L(x, . . . , x) for every x ∈ E. We denote by Ls(

nE) the Banach
space of all continuous symmetric n-linear forms on E endowed with the norm
‖L‖ = sup‖xj‖=1,1≤j≤n |L(x1, . . . , xn)|. P(nE) denotes the Banach space of
all continuous n-homogeneous polynomials from E into R endowed with the
norm ‖P‖ = sup‖x‖=1 |P (x)|. For more details about the theory of multilinear

mappings and polynomials on a Banach space, we refer to [8].
In 1998, Choi et al. [3, 4] characterized the extreme points of the unit

ball of P(2l21) and P(2l22). In 2007, the author [13] classified the exposed
2-homogeneous polynomials on P(2l2p) (1 ≤ p ≤ ∞). Recently, the author
[15, 17, 21] classify the extreme, exposed, smooth points of the unit ball of
P(2d∗(1, w)2), where d∗(1, w)2 = R2 with the octagonal norm of weight w.

In 2009, the author [14] classified the extreme, exposed, smooth points of
the unit ball of Ls(

2l2∞). Recently, the author [16, 18–20] classify the extreme,
exposed, smooth points of the unit balls of Ls(

2d∗(1, w)2) and L(2d∗(1, w)2).
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We refer to ([1–7], [9–28] and references therein) for some recent work about
extremal properties of multilinear mappings and homogeneous polynomials on
some classical Banach spaces. In this paper, we classify the extreme, exposed
and smooth symmetric 3-linear forms of the unit ball of Ls(

3l2∞), respectively.

2. The extreme points of the unit ball of Ls(
3l2∞)

Let T ((x1, x2), (y1, y2), (z1, z2)) = ax1y1z1 + bx2y2z2 + c(x2y1z1 + y2x1z1 +
z2x1y1) + d(x1y2z2 + y1x2z2 + z1x2y2) ∈ Ls(

3l2∞) for some a, b, c, d ∈ R. For
simplicity, we will denote T by (a, b, c, d).

Theorem 2.1. Let T = (a, b, c, d) ∈ Ls(
3l2∞). Then

‖T‖ = max{|a+ 3d|+ |b+ 3c|, |a− d|+ |b− c|}.

Proof. Since {(1, 1), (1,−1), (−1, 1), (−1,−1)} is the set of all extreme points
of the unit ball of l2∞ and T is a symmetric 3-linear form,

‖T‖ = max{|T ((1, 1), (1, 1), (1, 1))|, |T ((1,−1), (1, 1), (1, 1))|,
|T ((1,−1), (1,−1), (1, 1))|, |T ((1,−1), (1,−1), (1,−1))|}

= max{|a+ 3d|+ |b+ 3c|, |a− d|+ |b− c|}. �

Note that if ‖T‖ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 1
3 , |d| ≤

1
3 .

Theorem 2.2. Let T = (a, b, c, d) ∈ Ls(
3l2∞). Then T ∈ extBLs(3l2∞) if and

only if (b, a, d, c) ∈ extBLs(3l2∞).

Proof. Let

S((x1, x2), (y1, y2), (z1, z2)) := T ((x2, x1), (y2, y1), (z2, z1)) ∈ Ls(
3l2∞).

Then S = (b, a, d, c). Note that T ∈ extBLs(3l2∞) if and only if (b, a, d, c) ∈
extBLs(3l2∞). �

Theorem 2.3.

extBLs(3l2∞) = {±(1, 0, 0, 0),±(0, 1, 0, 0),±( 1
2 , 0, 0,−

1

2
),±(0, 12 ,−

1
2 , 0),

± ( 1
4 ,−

3
4 ,

1
4 ,

1
4 ),±(− 3

4 ,
1
4 ,

1
4 ,

1
4 ),±( 3

4 ,
1
4 ,

1
4 ,−

1
4 ),±( 1

4 ,
3
4 ,−

1
4 ,

1
4 )}.

Proof. Let T = (a, b, c, d) ∈ Ls(
3l2∞).

Claim: T ∈ extBLs(3l2∞) if and only if

1 = |T ((1, 1), (1, 1), (1, 1))| = |T ((1,−1), (1, 1), (1, 1))|
= |T ((1,−1), (1,−1), (1, 1))| = |T ((1,−1), (1,−1), (1,−1))|.

(∗)

(⇐): Let T1 = (a+ε, b+δ, c+γ, d+ρ), T2 = (a−ε, b−δ, c−γ, d−ρ) ∈ Ls(
3l2∞)

be such that ‖T1‖ = ‖T2‖ = 1 for some ε, δ, γ, ρ ∈ R. Since, for j = 1, 2,

1 ≥ |Tj((1, 1), (1, 1), (1, 1))|,
1 ≥ |Tj((1,−1), (1, 1), (1, 1))|,
1 ≥ |Tj((1,−1), (1,−1), (1, 1))|,
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1 ≥ |Tj((1,−1), (1,−1), (1,−1))|,
we have

0 = ε+ δ + 3γ + 3ρ,

0 = ε− δ − 3γ + 3ρ,

0 = ε+ δ − γ − ρ,
0 = ε− δ + γ − ρ,

which show that 0 = ε = δ = γ = ρ. Hence, T is extreme.
(⇒): Otherwise. Then four cases may happen as follows:

(Case 1) |T ((1, 1), (1, 1), (1, 1))| < 1 or
(Case 2) |T ((1,−1), (1, 1), (1, 1))| < 1 or
(Case 3) |T ((1,−1), (1,−1), (1, 1))| < 1 or
(Case 4) |T ((1,−1), (1,−1), (1,−1))| < 1.
Case 1: |T ((1, 1), (1, 1), (1, 1))| < 1
Without loss of generality, we may assume that

1 = |T ((1,−1), (1, 1), (1, 1))|
= |T ((1,−1), (1,−1), (1, 1))|
= |T ((1,−1), (1,−1), (1,−1))|.

Let n ∈ N be such that a + b + 3c + 3d + 8
n < 1. Let T1 = (a + 1

n , b +
1
n , c+ 1

n , d+ 1
n ), T2 = (a− 1

n , b−
1
n , c−

1
n , d−

1
n ) ∈ Ls(

3l2∞). By Theorem 2.1,
‖T1‖ = ‖T2‖ = 1, which shows that T is not extreme. It is a contradiction.
Similar to the Case 1, if (Case 2) or (Case 3) or (Case 4) is true, then we may
show that T is not extreme. It is a contradiction. Therefore, we have shown
the Claim. By (∗), we complete the proof. �

3. The exposed points of the unit ball of Ls(
3l2∞)

Theorem 3.1. Let f ∈ Ls(
3l2∞)∗ and α = f(x1y1z1), β = f(x2y2z2), γ =

f(x2y1z1 + y2x1z1 + z2x1y1), δ = f(x1y2z2 + y1x2z2 + z1x2y2). Then

‖f‖ = max{|α|, |β|, 12 |α− δ|,
1
2 |β − γ|,

1
4 (|α+ δ|+ |3β − γ|),

1
4 (|3α− δ|+ |β + γ|)}.

Proof. It follows from Theorem 2.3 and the fact that

‖f‖ = max
T∈extBL(2l2∞)

|f(T )|.
�

Theorem 3.2 ([19, Theorem 2.3]). Let E be a real Banach space such that
extBE is finite. Suppose that x ∈ extBE satisfies that there exists an f ∈ E∗
with f(x) = 1 = ‖f‖ and |f(y)| < 1 for every y ∈ extBE\{±x}. Then x ∈
expBE.

Theorem 3.3. Let T = (a, b, c, d) ∈ Ls(
3l2∞). Then T ∈ expBLs(3l2∞) if and

only if (b, a, d, c) ∈ expBLs(3l2∞).
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Proof. Let

S((x1, x2), (y1, y2), (z1, z2)) := T ((x2, x1), (y2, y1), (z2, z1)) ∈ Ls(
3l2∞).

Then S = (b, a, d, c). Note that T ∈ expBLs(3l2∞) if and only if (b, a, d, c) ∈
expBLs(3l2∞). �

Now we are in position to describe all the exposed points of the unit ball of
Ls(

3l2∞).

Theorem 3.4. expBLs(3l2∞) = extBLs(3l2∞).

Proof. It is enough to show that extBLs(3l2∞) ⊂ expBLs(3l2∞).
Claim: T = (1, 0, 0, 0) is exposed.
Let f ∈ Ls(

3l2∞)∗ be such that α = 1, 0 = β = δ = γ. Then f(T ) =
1, |f(S)| < 1 for every S ∈ extBLs(3l2∞)\{±T}. By Theorem 3.2, T is exposed.
By Theorem 3.3, (0, 1, 0, 0) is exposed.

Claim: T = (0, 12 ,−
1
2 , 0) is exposed.

Let f ∈ Ls(
3l2∞)∗ be such that α = 0 = β = δ, γ = −2. Then f(T ) =

1, |f(S)| < 1 for every S ∈ extBLs(3l2∞)\{±T}. By Theorem 3.2, T is exposed.

By Theorem 3.3, ( 1
2 , 0, 0,−

1
2 ) is exposed.

Claim: T = ( 1
4 ,−

3
4 ,

1
4 ,

1
4 ) is exposed.

Let f ∈ Ls(
3l2∞)∗ be such that α = 1

2 = −β, γ = 1 = δ. Then f(T ) =
1, |f(S)| < 1 for every S ∈ extBLs(3l2∞)\{±T}. By Theorem 3.2, T is exposed.

By Theorem 3.3, (− 3
4 ,

1
4 ,

1
4 ,

1
4 ) is exposed.

Claim: T = ( 1
4 ,

3
4 ,−

1
4 ,

1
4 ) is exposed.

Let f ∈ Ls(
3l2∞)∗ be such that α = 1

2 = β,−γ = 1 = δ. Then f(T ) =
1, |f(S)| < 1 for every S ∈ extBLs(3l2∞)\{±T}. By Theorem 3.2, T is exposed.

By Theorem 3.3, ( 3
4 ,

1
4 ,−

1
4 ,

1
4 ) is exposed. �

4. The smooth points of the unit ball of Ls(
3l2∞)

Theorem 4.1. Let T = (a, b, c, d) ∈ Ls(
3l2∞). Then T ∈ smBLs(3l2∞) if and

only if

(|T ((1, 1), (1, 1), (1, 1))| = 1, |T ((1,−1), (1, 1), (1, 1))| < 1,

|T ((1,−1), (1,−1), (1, 1))| < 1, |T ((1,−1), (1,−1), (1,−1))| < 1) or

(|T ((1, 1), (1, 1), (1, 1))| < 1, |T ((1,−1), (1, 1), (1, 1))| = 1,

|T ((1,−1), (1,−1), (1, 1))| < 1, |T ((1,−1), (1,−1), (1,−1))| < 1) or

(|T ((1, 1), (1, 1), (1, 1))| < 1, |T ((1,−1), (1, 1), (1, 1))| < 1,

|T ((1,−1), (1,−1), (1, 1))| = 1, |T ((1,−1), (1,−1), (1,−1))| < 1) or

(|T ((1, 1), (1, 1), (1, 1))| < 1, |T ((1,−1), (1, 1), (1, 1))| < 1, |T ((1,−1),

(1,−1), (1, 1))| < 1, |T ((1,−1), (1,−1), (1,−1))| = 1).
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Proof.

Case 1 : |T ((1, 1), (1, 1), (1, 1))| = 1, |T ((1,−1), (1, 1), (1, 1))| < 1,

|T ((1,−1), (1,−1), (1, 1))| < 1, |T ((1,−1), (1,−1), (1,−1))| < 1.

Let l := T ((1, 1), (1, 1), (1, 1)) = a+ b+ 3c+ 3d for some l ∈ {1,−1}. Let f ∈
Ls(

3l2∞)
∗

be such that f(T ) = 1 = ‖f‖ with α = f(x1y1z1), β = f(x2y2z2), γ =
f(x2y1z1 + y2x1z1 + z2x1y1), δ = f(x1y2z2 + y1x2z2 + z1x2y2). We will show
that α = l = β, γ = 3l = δ. Let n ∈ N be such that

|a+ 3d− b− 3c|+ 6

n
< 1, |a− d+ b− c|+ 4

3n
< 1, |a− d− b+ c|+ 2

n
< 1.

By Theorem 2.1,

1 = ‖(a± 1

n
, b∓ 1

n
, c, d)‖ = ‖(a, b, c± 1

n
, d∓ 1

n
)‖ = ‖(a± 1

n
, b, c∓ 1

3n
, d)‖.

Since

1 ≥ |f((a± 1

n
, b∓ 1

n
, c, d))| = 1± 1

n
(α− β),

so, α = β. Since

1 ≥ |f((a, b, c± 1

n
, d∓ 1

n
))| = 1± 1

n
(γ − δ),

so, γ = δ. Since

1 ≥ |f((a± 1

n
, b, c∓ 1

3n
, d))| = 1± 1

n
(α− 1

3
γ),

so, α = 1
3γ. Therefore,

1 = f(T ) = aα+ bβ + cγ + dδ = (a+ b+ 3c+ 3d)α = lα,

hence, α = l = β, γ = 3l = δ. Therefore, T ∈ smBLs(3l2∞).

Case 2 : |T ((1, 1), (1, 1), (1, 1))| < 1, |T ((1,−1), (1, 1), (1, 1))| = 1,

|T ((1,−1), (1,−1), (1, 1))| < 1, |T ((1,−1), (1,−1), (1,−1))| < 1.

Let f ∈ Ls(
3l2∞)

∗
be such that f(T ) = 1 = ‖f‖ with α = f(x1y1z1), β =

f(x2y2z2), γ = f(x2y1z1 + y2x1z1 + z2x1y1), δ = f(x1y2z2 + y1x2z2 + z1x2y2).
By the similar argument in the Case 1, we show that α = l = −β = γ = −δ.

Therefore, T ∈ smBLs(3l2∞).

Case 3 : |T ((1, 1), (1, 1), (1, 1))| < 1, |T ((1,−1), (1, 1), (1, 1))| < 1,

|T ((1,−1), (1,−1), (1, 1))| = 1, |T ((1,−1), (1,−1), (1,−1))| < 1.

Let f ∈ Ls(
3l2∞)

∗
be such that f(T ) = 1 = ‖f‖ with α = f(x1y1z1), β =

f(x2y2z2), γ = f(x2y1z1 + y2x1z1 + z2x1y1), δ = f(x1y2z2 + y1x2z2 + z1x2y2).
By the similar argument in the Case 1, we show that α = l = β = −γ = −δ.

Therefore, T ∈ smBLs(3l2∞).

Case 4 : |T ((1, 1), (1, 1), (1, 1))| < 1, |T ((1,−1), (1, 1), (1, 1))| < 1,

|T ((1,−1), (1,−1), (1, 1))| < 1, |T ((1,−1), (1,−1), (1,−1))| = 1.
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Let f ∈ Ls(
3l2∞)

∗
be such that f(T ) = 1 = ‖f‖ with α = f(x1y1z1), β =

f(x2y2z2), γ = f(x2y1z1 + y2x1z1 + z2x1y1), δ = f(x1y2z2 + y1x2z2 + z1x2y2).
By the similar argument in the Case 1, we show that α = l = −β, γ = −3l =

−δ. Therefore, T ∈ smBLs(3l2∞). �
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