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INCLUSION PROPERTIES REGARDING CLASSES OF
MEROMORPHIC P-VALENT FUNCTIONS, INVOLVING THE
OPERATOR J7

PETRICA DIcU AND ALINA TOTOI

ABSTRACT. Forp € N* let ¥, o denote the class of meromorphic functions
of the form g(z) = z% +ap+aiz+---, z € U. In the present paper we
introduce a new subclass of the class ¥ o, using the subordination and
the operator J; - This class will be denoted by B; s (e, h) and we study
some inclusion properties of this subclass.

1. Introduction and preliminaries

Let U = {z € C/ |z| < 1} be the unit disc in the complex plane and
U = U \ {0} the punctured disc.

We consider the sets of functions H(U)={f : U —C/f is holomorphic in U}
and H,(U) ={f € H(U)/f is univalent in U}.

For p e N, p #0, let X, denote the class of meromorphic p-valent functions
of the form u

g(z)zz;pp-l—ao—i—alz—k--- ,2€U, a_p #0,

and X,0={g€X,:a_, =1}

For n € Z, p € N*, A € C with Re A > p, let us consider, on the class 3,
the operator J : ¥ — X, defined as

n a— = (A—-p\" a—
Jiag(z) = =2 + Z <kz+)\) apz®, where g(z) = Z—pp + Zakzk.

zP
k=0

This operator was introduced for the first time by Alina Totoi in [7].
Obviously, we also have J7\ : X0 — Xp 0.
We have the next properties for J;\, when ReA > p :

(1) T3 x9(2) = g(2), g€ Zy;
(2) Jgﬁ)\g('z) = % foz t’\_lg(t)dt = Jpag(2), g € Ep;
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(3) ATa(2) = 5" (2). nm € . g € 5y

(4) Jp,(Jphg(2) = T (Jp,9(2)), nom € Z, g € Xy, v > p;

(5) Jpalgr +92)(2) = J”Ash( z) + Jy,92(2) for g1, 92 € 5y, n € Z;

(6) Ji\(co)(2) = I g(2), c €T e 2

(7) Jpa(29'(2)) = 2(J}29(2)) = (A —p)nglg(z) —AJpag(2), n€Z, g€
S,

Remark 1.1. (1) When A =2 and p = 1, we have

Ji29(2 +Zk+2

and this operator was studied by Cho and Kim [1] for n € Z and by Uralegaddi
and Somanatha [8] for n < 0.
(2) We also have the relation

ZQJ{L,QQ(Z) = Dn(Zzg(z))a g€,

where D™ is the well-known Sélagean differential operator of order n [5], defined

by D"f(2) = 2+ Y pookmapz®, f(2) = 2+ Y pq ar2®

(3) J;» is an extension to the meromorphic functlons of the operator K,
defined on A(p) = {f € HU) : f(2) = 2P + >, | aptn2P*"}, introduced in
[6]. Also, for n > 0 we find that K} is the Komatu linear operator, defined in
[3]-

(4) It’s easy to see that J', with n > 0 is an integral operator while J];j\l,
n > 0 is a differential operator with the property J, {(J}'\9(2)) = g(2).

Similar operators are also used in [2].

Definition 1.1 ([4]). Let f and F be members of H(U). The function f is said
to be subordinate to F', written f < F or f(z) < F(z), if there exists a function
w analytic in U, with w(0) = 0 and |w(z)| < 1, and such that f(z) = F(w(z)).

Lemma 1.1 ([4]). Let f € H({U) and h € H,(U) convex in U, with h(0) =
f(0). If .

flz) + ;Zf'(z) < h(2),
where Rep > 0 and p # 0, then f(z) < h(z).

2. Main results

Definition 2.1. For p e N*, n € Z, A\, « € C, with ReX > p, and h € H,(U)
convex in U with h(0) = 1, we define

Bl \(a,h) = {g € S0 2P I ((1 —a)g(z) - Zzg’(z)) < h(z), z € U} .

Remark 2.1. Let p € N* . n € Z, A\, « € C, with ReA > p and h € H,(U)
convex in U with h(0) = 1.
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1. We have BJ ,(a,h) # 0, since g(z) = & € Bl (a, h).
2. For every g € B} ,(a, h), we have

2 (-9 - 229/ |y =1

3. From the properties of the operator J;' we get

" ((1 —a)glz) - ;fzg%z)) = (1= ) Jag(e) — L7 G/ (2).

4. Let hy, he € H, (U) convex in U with hy(0) = ha(0) =1, by < ho. Tt is
obvious that we have

B;)L,A(Oé7 hl) C B;)\(a, hQ).
Theorem 2.1. Let as < a1 < 0. Then

B;L’A(Oéz, h) C B;l7)\(a1, h)
Proof. Let g € B} (a2, h). We have

Q2

LI ((1 —a2)g(2) — ng’(z)) < Nh(z), z €U,
which is equivalent to

(1= a2) Jag(e) = 22 (' (2) < h2)
Because J;y(29'(2)) = z(J; ,9(2))’, we obtain

(1) 2P (1= ) JPag(2) — zp+1%<J;Ag<z>>' < h(2).

Suppose that

(2) f(2) = 2P T 59(2).

It is easy to see that the function f(z) is analytic in U with f(0) = 1. Differ-
entiating both sides of (2) with respect to z, we get

F(2) = p 10 ag(2) + 27 (TP g(2)) "
‘We have now
B flo)- %zf’(z) =27 (1 az) Jiag(2) — zpﬂ%(J,ztAg(z))’
From (1) and (3) we obtain
f(z) - %Zf’(Z) < h(2).

Since % < 0, using Lemma 1.1 for the equality written above we get f(z) <
h(z), which means that

(4) 2P I g(2) < h(z).
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We want to verify the fact that g € B} (a1, h), this meaning that

LI ((1 —a1)g(z) — alzg’(z)) < h(z), z €U,
’ p
which is equivalent to

(5) P (1—ar) JPg(z) z“l%(J;Ag(z))' < h(2).

p ;
It is not difficult to see that we have

(6) 2 (1—an)J7yg(2) — zp“%umz))’

_ 9 n +192 o a1 n
= (21 a0) Fag) - 200 ) + (12 52) o)
Since 0 < ¢+ <1 and h € H,(U) convex, it follows from (1) and (4) that

aq n 192, op al n
o (Zp (1—az) Jy\g(2)—2P" p(‘]p,)\g(’z))/) + (1—Oé2> 2P Jpag(2) < h(z),
SO

2 (1= az) T g(2) — zp“%(J;iAgW < h(z).

Thus g € B} (a1, h) and the proof of Theorem 2.1 is completed. O
The following result gives a connection between the sets B y(a, h) and
Bg»;l(a, h).
Theorem 2.2. Letp e N*, n € Z, A\, « € C, with ReA > p and h € H,(U)
convez in U with h(0) = 1. Then
g € By \(a,h) & Jpa(9) € B;i;l(a, h),

where J, 5(9)(z) = 252 [ A" 1g(t)dt.

Proof. Let be g € B}y (v, h) and consider G = J, \(g).
We have G € Bgy;l(a, h) if and only if

I ((1 —a)G(z) — zzG’(2)> < h(z), z €U,

which is equivalent to
n— o n— !
22 (1—a) Jp7/\1G(z) - zp;Jp7/\1 (2G'(2)) < h(2).
Because J;;l(zG’(z)) = ,z(J;‘;lG(z))’7 we obtain
n— Qo
(7) 2P (1 - a) prAlG(z) - zp+1;(Jp7)\lG(z))’ =< h(z).

Using the fact that J'3'(J},(9))
Jp.2(g), we obtain

Ton (G) = T3 (Tpal9)) = Tyt (Do) = Jpalg).

J'\(g) and knowing that J) ,(g) =
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From J;;l(G) = J;'\(g) and (7) we deduce that G € B;”;l(a, h) if and only if
®) (1= a) Jpag(s) = P (pag(2) < hi)

It is easy to see that equality (8) is equivalent with

ZPJ;:;)\ ((1 — Oé) g(z) — izg'(z)) < h(Z), z € U7
this meaning that
g € Byy(a,h) & G =Jpa(g9) € Bl (a,h). 0

Theorem 2.3. Let p e N* ne€ Z, \, a,y € C, with ReA > p and Re~y > p.
Let us consider h € H,(U), convex in U, with h(0) = 1. Then

g€ By \(a,h) = G =Jy,(g9) € By \(a,h).
Proof. Let be g € By y(a, h) and G = J,, ,(g) with

Ioata)) = 22 [T gt

27
We have g € B, (a, h) if and only if

2PI0 <(1 —a)g(z) — Zzg’(z)) < h(z), z € U.

We denote by

0 w2 =I5 (=) - 229/(2)) 2 € 0,
and we get
(10) g € By (a,h) & 2Pu(z) < h(z), z € U.

We must prove that G = J,,(g) € B} \(a, h).
We have G = Jp, ,(g) € By \(a, h) if and only if

2P ((1 —a) Jpr9(2) — ZZ(Jp,wg)/(Z)> < h(z), ze U.

From the above subordination, using now the properties of the operator .Jj, -,
we get

a
2PI0 (Jp,v ((1 —a)g(z) — ng’(z))) < h(z), z €U,
which is equivalent to
(11) P, (J;;W <(1 —a)g(z) — sz(z))) < h(z), z€U.

Using (9), the last subordination is equivalent to 2P.J, ,(u)(z) < h(z), this
meaning that G = J, (g9) € By ,(a, h) if and only if 2P J,, , (u)(2) < h(2).
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Let us denote J, yu by U. It is easy to see that

(12) YU(2) +2U'(2) = (v = pJu(2), z € U.

From (12) we obtain

PAU(2) + 2PTU (2) = 2P(y — plu(z), z € U,

which is equivalent to

1
13 2PU(z) + 2PU(2) + ——2PHU/(2) = 2Pu(z), z € U.
(13) (2) po— (2) po— (2) (2)
If we denote V(z) = 2PU(z), we have
p 1 177/
V/(z) = PU(2) + ——2PT1U(2),
(2) po— (2) po— (2)

therefore, from (13), we obtain the equality

1

V(z)+ = V'(z) = 2Pu(z), z € U.

From (10) we know that we have zPu(z) < h(z), z € U, this meaning that we
get the subordination

1
TP

V(z)+z V'(2) < h(z), z € U.

Since Re (v — p) > 0, from the above subordination, using Lemmal.1, we get

[1]
2]
3]
[4]
[5]

[6]

7]

(8]

V(z) = 2PU(z) < h(z), z € U.
Therefore, we get 2PJ, (u)(2) < h(z), z € U, this meaning that
G= Jp,'y(g) € B;Tol,)\(aa h). U
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