DOI QR코드

DOI QR Code

Autofocus Phase Compensation of Velocity Disturbed UUV by DPC Processing with Multiple-Receiver

다중 수신기 DPC 처리에 의한 속도 교란 수중 무인체의 자동초점 위상 보상

  • Kim, Boo-il (Department of Electrical, Electronics and Software Engineering, Pukyong National University)
  • Received : 2017.08.26
  • Accepted : 2017.09.12
  • Published : 2017.10.31

Abstract

In the case of a small UUV operating an active synthetic aperture sonar, various velocity disturbances may occur on the path due to the influence of external underwater environment, and this causes phase errors in coherent synthetic aperture processing, which has a large influence on the detected image. In this paper, when a periodic sinusoidal velocity disturbance is generated in the traveling direction, the phase generated by the round trip slope range at each position is estimated the cross correlation coefficient for multiple received signals and compensated the position variation in the overlapped DPC by the average value within the maximum allowable width. Through simulations, it has been confirmed that the images degraded by the velocity disturbance amplitude and fluctuating frequency of the UUV are removed from the false targets and the performance of azimuth resolution is improved by the proposed phase compensation method.

능동 합성 개구면 소나를 운용하는 소형 수중 무인체는 외부 수중환경의 영향으로 진행경로에 여러 가지 속도 교란이 발생될 수 있으며, 이는 코히어런트 합성 개구면 처리시 위상 오차를 발생시켜 탐지 이미지에 큰 영향을 미친다. 본 연구에서는 진행방향으로 주기적 사인형태의 속도 교란이 발생될 때 각 위치에서 왕복 진행 경사거리에 의해 발생되는 위상을 다중 수신 신호에 대한 상호상관 계수를 추정한 후 중첩된 DPC에서의 위치변위를 최대 허용범위 내에서의 평균값으로 보상하는 방법을 제시하였다. 시뮬레이션을 통하여 수중 무인체의 속도 교란 크기 및 변동 주파수에 의해 손상된 이미지는 제시된 위상 보상 방법으로 허위 표적 제거 및 방위해상도의 성능이 개선됨을 확인하였다.

Keywords

References

  1. M. P. Hayes, "Synthetic aperture sonar: a review of current status," IEEE Journal of Oceanic Engineering, vol. 34, pp. 207-217, July 2009. https://doi.org/10.1109/JOE.2009.2020853
  2. T. O. Saebo, S. A. V. Synnes, and R. E. Hansen, "Wideband interferometry in synthetic aperture sonar," IEEE Transaction on Geoscience and Remote Sensing, vol. 51, no. 8, pp. 4450-4459, Aug. 2013. https://doi.org/10.1109/TGRS.2013.2244900
  3. M. S. Davis, Cook and D. A. Cook, "Quantify the impact of range and azimuth ambiguities on multichannel SAR and SAS image quality," Proceedings of the 10th European Conference on Synthetic Aperture Radar, Germany, pp. 1393-1396, July 2014.
  4. K. Watanabe, S. Honda, and T. Sawa, "Study on improvement in resolution of synthetic aperture sonar using spatial filter," 2009 ICROS-SICE International Joint Conference, Japan, pp. 2317-2320, Aug. 2009.
  5. Z. Qiao and D. Kraus, "Azimuth Ambiguity in Redundant Sampled Stripmap SAS Imaging," Proceedings of the OCEANS 2016 - Shanghai, China, pp. 1-5, April 2016.
  6. H. Schmaljohann and J. Groen, "Motion estimation for synthetic aperture sonars," Proceedings of the 9th European Conference on Synthetic Aperture Radar, Germany, pp. 78-81, April 2012.
  7. Z. Tian, J. Tang, H. Zhong, and S. Zhang, "Extended range doppler algorithm for multiple-receiver synthetic aperture sonar based on exact analytical two-dimensional spectrum," IEEE Journal of Oceanic Engineering, vol. 41, no. 1, pp. 164-174, Jan. 2016. https://doi.org/10.1109/JOE.2015.2402053
  8. M. S. Davis and A. D. Lanterman, "Aliasing in recurrently sampled signals with an application to synthetic aperture imaging," IEEE Transactions on Signal Processing, vol. 63, no. 12, pp. 3088-3095, June 2015. https://doi.org/10.1109/TSP.2015.2417503
  9. X. Zhang, J. Tang, and H. Zhong, "Multireceiver correction for the chirp scaling algorithm in synthetic apertrure sonar," IEEE Journal of Oceanic Engineering, vol. 39, no. 3, pp. 472-481, July 2014. https://doi.org/10.1109/JOE.2013.2251809
  10. A. Bellettini and M. A. Pinto, "Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna," IEEE Journal of Oceanic Engineering, vol. 27, no. 4, pp. 780-789, Oct. 2002. https://doi.org/10.1109/JOE.2002.805096
  11. H. J. Callow, M. P. Hayes, and P. T. Gough, "Motioncompensation improvement for widebeam, multiplereceiver SAS systems," IEEE Journal of Oceanic Engineering, vol. 34, no. 3, pp. 262-268, July 2009. https://doi.org/10.1109/JOE.2009.2014659
  12. B. I. Kim, "Influences analysis of SAS azimuth resolution on the UUV trajectory disturbances," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 1, pp. 222-229, Jan. 2016. https://doi.org/10.6109/jkiice.2016.20.1.222
  13. R. McHugh, S. Shaw, and N. Taylor, "Azimuth ambiguities in broadside and squint mode synthetic aperture sonar," IEE Proceedings-Radar, Sonar and Navigation, vol. 146, no. 2, pp. 113-119, April 1999.
  14. R. S. H. Istepanian and M. Stojanovic, Underwater Acoustic Digital Signal Processing and Communication Systems, Boston: Kluwer Academic Publishers, 2002.