DOI QR코드

DOI QR Code

NIR 관련 논문 통계 분석에 의한 NIR 원격탐사의 기술 및 활용분야 고찰

A Study for the Techniques and Applications of NIR Remote Sensing Based on Statical Analyses of NIR-related Papers

  • 백원경 (서울시립대학교 공간정보공학과) ;
  • 박숭환 (서울시립대학교 공간정보공학과) ;
  • 정남기 (서울시립대학교 공간정보공학과) ;
  • 권수경 (서울시립대학교 공간정보공학과) ;
  • 진원지 (서울시립대학교 공간정보공학과) ;
  • 정형섭 (서울시립대학교 공간정보공학과)
  • 투고 : 2017.05.23
  • 심사 : 2017.10.19
  • 발행 : 2017.10.30

초록

본 연구에서는 NIR(Near-Infrared) 원격탐사 자료를 이용한 연구의 결과인 논문을 분석함으로써 NIR의 기술 및 활용 연구 분야를 체계적으로 정리하고, 이후 NIR 영상을 활용한 연구의 흐름과 방향을 정립하는 데에 목표가 있다. 이를 위하여 최근 5년간의 국내 저널들과 활용 분야 SCI저널, 기술 개발 분야 SCI저널에 대하여 NIR 활용 연구에 관하여 사례조사를 실시하였다. 선별작업 이후 총 281편의 논문에 대하여 분석을 수행하였으며 통계 분석을 위해 분류와 소분류로 구분하여 우세한 연구 추세를 살펴보았다. 그 결과 논문 작성을 수행한 연구자들의 소속은 대학이 약 60% 이상으로 가장 높았다. 적용 분야의 경우 국외에서 육지 50%, 환경 30% 그리고 재해 11%의 분포를 나타냈다. 한편 국내의 경우 육지 55%, 환경 24%, 재해 10%의 분포를 보였다. 육지에 대한 국내 연구 사례는 임업과 농업이 각각 47%, 28%로 가장 높은 비율을 차지했다. 그 외에 국토관리(17%), 지질/자원과 관련하여 나머지 8%를 차지했다. NIR을 활용한 재해 관측은 산사태, 가뭄, 기상재해, 홍수 등에 활용되었다. 여기서 특히 기상재해는 황사에 관한 연구 결과로 국내의 실정이 반영된 것으로 보인다. 하지만 국내의 연구 사례 중 산불 탐지에 관한 결과가 존재하지 않았다. 국내의 실정을 고려해 볼 때에 이에 관한 추가적이고 활발한 연구가 수행될 필요가 있어 보인다. 이 통계적 논문 분석 자료가 향후 우리나라의 NIR 기술 개발과 활용 분야 확장에 도움이 될 기초 자료로 활용될 수 있기를 기대한다.

In this study, we analyzed the paper about NIR (Near-Infrared) remote sensing data and systematically summarized the research and application fields of NIR. To do this, we conducted a case study on the use of NIR in domestic journals, and SCI journals in the field of technology development for the last 5 years. After selection, a total of 281 journals were analyzed. For the statistical analysis, the classification was divided into subclasses and the dominant research trends were examined. As a result, the researchers who wrote the papers made the highest score of about 60% or more at university. In the field of application, 50% of land, 30% of environment, and 11% of disaster were distributed on SCI journals. In Korea, on the other hand, 55% of land, 24% of environment and 10% of disasters were distributed. In addition, 17% of the national land management and 8% of the geological / natural resources. Disaster observation using NIR was used for landslide, drought, weather disaster and flood. In particular, meteorological disasters are a result of study on Asian dust. However, there were no results of forest fire detection in Korea. Considering the domestic situation, it seems necessary to carry out additional and active research on this. It is expected that this statistical analysis data will be used as basic data to help expand the NIR technology development and utilization field in Korea in the future.

키워드

참고문헌

  1. Agam, N., W.P. Kustas, M.C. Anderson, F. Li, and C.M. Neale, 2007. A vegetation index based technique for spatial sharpening of thermal imagery, Remote Sensing of Environment, 107(4): 545-558. https://doi.org/10.1016/j.rse.2006.10.006
  2. Bastarrika, A., E. Chuvieco, and M. P. Martin, 2011. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors, Remote Sensing of Environment, 115(4): 1003-1012. https://doi.org/10.1016/j.rse.2010.12.005
  3. Brown, M. E., 2015. Satellite remote sensing in agriculture and food security assessment, Procedia Environmental Sciences, 29: 307. https://doi.org/10.1016/j.proenv.2015.07.278
  4. Galvao, L. S., J. R. dos Santos, D. A. Roberts, F. M. Breunig, M. Toomey, and Y. M. de Moura, 2011. On intra-annual EVI variability in the dry season of tropical forest: A case study with MODIS and hyperspectral data, Remote Sensing of Environment, 115(9) : 2350-2359. https://doi.org/10.1016/j.rse.2011.04.035
  5. Gamon, J. A., K. F. Huemmrich, R. S. Stone, and C. E. Tweedie, 2013. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt, Remote sensing of environment, 129: 144-153. https://doi.org/10.1016/j.rse.2012.10.030
  6. Gholizadeh, M. H., A. M. Melesse, and L. Reddi, 2016. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques, Sensors, 16(8): 1298. https://doi.org/10.3390/s16081298
  7. Gitelson, A.A., Y. Peng, J.G. Masek, D.C. Rundquist, S. Verma, A. Suyker, J.M. Baker, J.L. Hatfield, and T. Meyers, 2012. Remote estimation of crop gross primary production with Landsat data, Remote Sensing of Environment, 121: 404-414. https://doi.org/10.1016/j.rse.2012.02.017
  8. Gomez, C., R. Oltra-Carrio, S. Bacha, P. Lagacherie, and X. Briottet, 2015. Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery, Remote Sensing of Environment, 164: 1-15. https://doi.org/10.1016/j.rse.2015.02.019
  9. Han, H., Y. Ji, Y. Kim, and H. Lee, 2014. Development of Normalized Difference Blue-ice Index(NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images, Korean Journal of Remote Sensing, 30(4): 481-491 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.4.6
  10. Hwang, Y. S. and J.-S. Um, 2015. Monitoring the Desiccation of Inland Wetland by Combining MNDWI and NDVI: A case study of Upo Wetland in South Korea, Journal of Korea Spatial Information Society, 23(6): 31-41 (in Korean with English abstract). https://doi.org/10.12672/ksis.2015.23.6.031
  11. Jeong, Y., J. Yu, S.-M. Koh, and C.-H. Heo, 2015. Assessment of Rocks and Alteration Information Extraction using ASTER data for Ovorkhangai Province, Mongolia, Economic and Environmental Geology, 48(4): 325-335 (in Korean with English abstract). https://doi.org/10.9719/EEG.2015.48.4.325
  12. Jiang, Y. and Q. Weng, 2013. Estimating LST using a vegetation-cover-based thermal sharpening technique, IEEE Geoscience and Remote Sensing Letters, 10(5): 1249-1252. https://doi.org/10.1109/LGRS.2013.2257667
  13. Jung, G.S., S. Koo, and H.H. Yoo, 2011. Temperature Change Analysis for Land use Zoning Using Landsat Satellite Imagery, Journal of the Korean Society for Geo-Spatial Information System, 19(2): 55-61. (in Korean with English abstract).
  14. Karami, J., A. Alimohammadi, and S. Modabberi, 2012. Analysis of the spatio-temporal patterns of water pollution and source contribution using the MODIS sensor products and multivariate statistical techniques, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4): 1243-1255. https://doi.org/10.1109/JSTARS.2012.2187273
  15. Kim, K.T., J.W. Cho, and H.H. Yoo, 2011. Carbon storage Estimation of Urban Area Using KOMPSAT-2 Imagery, Journal of the Korean Society for Geo-Spatial Information System, 19(2): 49-54. (in Korean with English abstract).
  16. Kumar, L., P. Sinha, S. Taylor, and A. F. Alqurashi, 2015. Review of the use of remote sensing for biomass estimation to support renewable energy generation, Journal of Applied Remote Sensing, 9(1): 097696. https://doi.org/10.1117/1.JRS.9.097696
  17. Lagomasino, D., R. M. Price, D. Whitman, P. K. Campbell, and A. Melesse, 2014. Estimating major ion and nutrient concentrations in mangrove estuaries in Everglades National Park using leaf and satellite reflectance, Remote Sensing of Environment, 154: 202-218. https://doi.org/10.1016/j.rse.2014.08.022
  18. Lee, H., 2006. Investigation of SAR systems, Technologies and application fields by a Statical Analysis of SAR-related Journal Paler, Korean Journal of Remote Sensing, 22(2): 153-174 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2006.22.2.153
  19. Liu, Q., S. Liang, Z. Xiao, and H. Fang, 2014. Retrieval of leaf area index using temporal, spectral, and angular information from multiple satellite data, Remote Sensing of Environment, 145: 25-37. https://doi.org/10.1016/j.rse.2014.01.021
  20. Lobo, F.L., M. P. Costa, and E. M. Novo, 2015. Timeseries analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities, Remote Sensing of Environment, 157: 170-184. https://doi.org/10.1016/j.rse.2014.04.030
  21. Meng, X., S. Lu, Y. Gao, and J. Guo, 2015. Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China, International Journal of Climatology, 35(14): 4116-4125. https://doi.org/10.1002/joc.4271
  22. Peng, Y. and A.A. Gitelson, 2012. Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content, Remote Sensing of Environment, 117: 440-448. https://doi.org/10.1016/j.rse.2011.10.021
  23. Queensland Department of Science, Information Technology and the Arts and Department of Natural Resources and Mines, 2014. Review of Remote Sensing Applications for Natural Resource Management, Eco Logical Australia, Australia.
  24. Singh, R.K. and P. Shanmugam, 2014. A novel method for estimation of aerosol radiance and its extrapolation in the atmospheric correction of satellite data over optically complex oceanic waters, Remote Sensing of Environment, 142: 188-206. https://doi.org/10.1016/j.rse.2013.12.001
  25. Van Trung, N., J. H. Choi, and J. S. Won, 2013. A land cover variation model of water level for the floodplain of Tonle Sap, Cambodia, derived from ALOS PALSAR and MODIS data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5): 2238-2253. https://doi.org/10.1109/JSTARS.2012.2226437
  26. Viedma, O., I. Torres, B. Perez, and J. M. Moreno, 2012. Modeling plant species richness using reflectance and texture data derived from QuickBird in a recently burned area of Central Spain, Remote Sensing of Environment, 119: 208-221. https://doi.org/10.1016/j.rse.2011.12.024
  27. Wang, M., W. Yang, P. Shi, C. Xu, and L. Liu, 2014. Diagnosis of vegetation recovery in mountainous regions after the Wenchuan earthquake, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7): 3029-3037. https://doi.org/10.1109/JSTARS.2014.2327794
  28. Wojtowicz, M., A. Wojtowicz, and J. Piekarczyk, 2016. Application of remote sensing methods in agriculture, Communications in Biometry and Crop Science, 11: 31-50.
  29. Xie, Y., Z. Sha, and M. Yu, 2008. Remote sensing imagery in vegetation mapping: a review, Journal of Plant Ecology, 1(1): 9-23. https://doi.org/10.1093/jpe/rtm005
  30. Yang, W., M. Wang, and P. Shi, 2013. Using MODIS NDVI time series to identify geographic patterns of landslides in vegetated regions, IEEE Geoscience and Remote Sensing Letters, 10(4): 707-710. https://doi.org/10.1109/LGRS.2012.2219576