참고문헌
- Agam, N., W.P. Kustas, M.C. Anderson, F. Li, and C.M. Neale, 2007. A vegetation index based technique for spatial sharpening of thermal imagery, Remote Sensing of Environment, 107(4): 545-558. https://doi.org/10.1016/j.rse.2006.10.006
- Bastarrika, A., E. Chuvieco, and M. P. Martin, 2011. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors, Remote Sensing of Environment, 115(4): 1003-1012. https://doi.org/10.1016/j.rse.2010.12.005
- Brown, M. E., 2015. Satellite remote sensing in agriculture and food security assessment, Procedia Environmental Sciences, 29: 307. https://doi.org/10.1016/j.proenv.2015.07.278
- Galvao, L. S., J. R. dos Santos, D. A. Roberts, F. M. Breunig, M. Toomey, and Y. M. de Moura, 2011. On intra-annual EVI variability in the dry season of tropical forest: A case study with MODIS and hyperspectral data, Remote Sensing of Environment, 115(9) : 2350-2359. https://doi.org/10.1016/j.rse.2011.04.035
- Gamon, J. A., K. F. Huemmrich, R. S. Stone, and C. E. Tweedie, 2013. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt, Remote sensing of environment, 129: 144-153. https://doi.org/10.1016/j.rse.2012.10.030
- Gholizadeh, M. H., A. M. Melesse, and L. Reddi, 2016. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques, Sensors, 16(8): 1298. https://doi.org/10.3390/s16081298
- Gitelson, A.A., Y. Peng, J.G. Masek, D.C. Rundquist, S. Verma, A. Suyker, J.M. Baker, J.L. Hatfield, and T. Meyers, 2012. Remote estimation of crop gross primary production with Landsat data, Remote Sensing of Environment, 121: 404-414. https://doi.org/10.1016/j.rse.2012.02.017
- Gomez, C., R. Oltra-Carrio, S. Bacha, P. Lagacherie, and X. Briottet, 2015. Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery, Remote Sensing of Environment, 164: 1-15. https://doi.org/10.1016/j.rse.2015.02.019
- Han, H., Y. Ji, Y. Kim, and H. Lee, 2014. Development of Normalized Difference Blue-ice Index(NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images, Korean Journal of Remote Sensing, 30(4): 481-491 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.4.6
- Hwang, Y. S. and J.-S. Um, 2015. Monitoring the Desiccation of Inland Wetland by Combining MNDWI and NDVI: A case study of Upo Wetland in South Korea, Journal of Korea Spatial Information Society, 23(6): 31-41 (in Korean with English abstract). https://doi.org/10.12672/ksis.2015.23.6.031
- Jeong, Y., J. Yu, S.-M. Koh, and C.-H. Heo, 2015. Assessment of Rocks and Alteration Information Extraction using ASTER data for Ovorkhangai Province, Mongolia, Economic and Environmental Geology, 48(4): 325-335 (in Korean with English abstract). https://doi.org/10.9719/EEG.2015.48.4.325
- Jiang, Y. and Q. Weng, 2013. Estimating LST using a vegetation-cover-based thermal sharpening technique, IEEE Geoscience and Remote Sensing Letters, 10(5): 1249-1252. https://doi.org/10.1109/LGRS.2013.2257667
- Jung, G.S., S. Koo, and H.H. Yoo, 2011. Temperature Change Analysis for Land use Zoning Using Landsat Satellite Imagery, Journal of the Korean Society for Geo-Spatial Information System, 19(2): 55-61. (in Korean with English abstract).
- Karami, J., A. Alimohammadi, and S. Modabberi, 2012. Analysis of the spatio-temporal patterns of water pollution and source contribution using the MODIS sensor products and multivariate statistical techniques, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4): 1243-1255. https://doi.org/10.1109/JSTARS.2012.2187273
- Kim, K.T., J.W. Cho, and H.H. Yoo, 2011. Carbon storage Estimation of Urban Area Using KOMPSAT-2 Imagery, Journal of the Korean Society for Geo-Spatial Information System, 19(2): 49-54. (in Korean with English abstract).
- Kumar, L., P. Sinha, S. Taylor, and A. F. Alqurashi, 2015. Review of the use of remote sensing for biomass estimation to support renewable energy generation, Journal of Applied Remote Sensing, 9(1): 097696. https://doi.org/10.1117/1.JRS.9.097696
- Lagomasino, D., R. M. Price, D. Whitman, P. K. Campbell, and A. Melesse, 2014. Estimating major ion and nutrient concentrations in mangrove estuaries in Everglades National Park using leaf and satellite reflectance, Remote Sensing of Environment, 154: 202-218. https://doi.org/10.1016/j.rse.2014.08.022
- Lee, H., 2006. Investigation of SAR systems, Technologies and application fields by a Statical Analysis of SAR-related Journal Paler, Korean Journal of Remote Sensing, 22(2): 153-174 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2006.22.2.153
- Liu, Q., S. Liang, Z. Xiao, and H. Fang, 2014. Retrieval of leaf area index using temporal, spectral, and angular information from multiple satellite data, Remote Sensing of Environment, 145: 25-37. https://doi.org/10.1016/j.rse.2014.01.021
- Lobo, F.L., M. P. Costa, and E. M. Novo, 2015. Timeseries analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities, Remote Sensing of Environment, 157: 170-184. https://doi.org/10.1016/j.rse.2014.04.030
- Meng, X., S. Lu, Y. Gao, and J. Guo, 2015. Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China, International Journal of Climatology, 35(14): 4116-4125. https://doi.org/10.1002/joc.4271
- Peng, Y. and A.A. Gitelson, 2012. Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content, Remote Sensing of Environment, 117: 440-448. https://doi.org/10.1016/j.rse.2011.10.021
- Queensland Department of Science, Information Technology and the Arts and Department of Natural Resources and Mines, 2014. Review of Remote Sensing Applications for Natural Resource Management, Eco Logical Australia, Australia.
- Singh, R.K. and P. Shanmugam, 2014. A novel method for estimation of aerosol radiance and its extrapolation in the atmospheric correction of satellite data over optically complex oceanic waters, Remote Sensing of Environment, 142: 188-206. https://doi.org/10.1016/j.rse.2013.12.001
- Van Trung, N., J. H. Choi, and J. S. Won, 2013. A land cover variation model of water level for the floodplain of Tonle Sap, Cambodia, derived from ALOS PALSAR and MODIS data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5): 2238-2253. https://doi.org/10.1109/JSTARS.2012.2226437
- Viedma, O., I. Torres, B. Perez, and J. M. Moreno, 2012. Modeling plant species richness using reflectance and texture data derived from QuickBird in a recently burned area of Central Spain, Remote Sensing of Environment, 119: 208-221. https://doi.org/10.1016/j.rse.2011.12.024
- Wang, M., W. Yang, P. Shi, C. Xu, and L. Liu, 2014. Diagnosis of vegetation recovery in mountainous regions after the Wenchuan earthquake, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7): 3029-3037. https://doi.org/10.1109/JSTARS.2014.2327794
- Wojtowicz, M., A. Wojtowicz, and J. Piekarczyk, 2016. Application of remote sensing methods in agriculture, Communications in Biometry and Crop Science, 11: 31-50.
- Xie, Y., Z. Sha, and M. Yu, 2008. Remote sensing imagery in vegetation mapping: a review, Journal of Plant Ecology, 1(1): 9-23. https://doi.org/10.1093/jpe/rtm005
- Yang, W., M. Wang, and P. Shi, 2013. Using MODIS NDVI time series to identify geographic patterns of landslides in vegetated regions, IEEE Geoscience and Remote Sensing Letters, 10(4): 707-710. https://doi.org/10.1109/LGRS.2012.2219576