DOI QR코드

DOI QR Code

A Survey on Oil Spill and Weather Forecast Using Machine Learning Based on Neural Networks and Statistical Methods

신경망 및 통계 기법 기반의 기계학습을 이용한 유류유출 및 기상 예측 연구 동향

  • 김경도 (광운대학교 컴퓨터과학과) ;
  • 김용혁 (광운대학교 컴퓨터과학과)
  • Received : 2017.09.01
  • Accepted : 2017.10.20
  • Published : 2017.10.28

Abstract

Accurate forecasting enables to effectively prepare for future phenomenon. Especially, meteorological phenomenon is closely related with human life, and it can prevent from damage such as human life and property through forecasting of weather and disaster that can occur. To respond quickly and effectively to oil spill accidents, it is important to accurately predict the movement of oil spills and the weather in the surrounding waters. In this paper, we selected four representative machine learning techniques: support vector machine, Gaussian process, multilayer perceptron, and radial basis function network that have shown good performance and predictability in the previous studies related to oil spill detection and prediction in meteorology such as wind, rainfall and ozone. we suggest the applicability of oil spill prediction model based on machine learning.

정확한 예측은 미래에 일어날 현상에 대해 효과적으로 준비 혹은 대처 할 수 있게 해준다. 특히, 기상 현상은 인간의 생활과 밀접한 연관이 있으며, 발생할 수 있는 기상 및 재난 예측을 통해 인명, 재산 등의 피해로부터 예방 할 수 있게 해준다. 해상에서 발생할 수 있는 재난 중 하나인 유류유출 사고에 대해 빠르고 효과적으로 대응하기 위해서는 유출유의 이동과 주변 해역의 기상을 정확하게 예측하는 것이 중요하다. 본 논문에서는 분류 및 회귀 예측과 관련된 연구에서 준수한 성능 및 예측 가능성을 보여준 기계학습 기법으로 서포트 벡터 머신, 가우시안 프로세스, 다층 퍼셉트론, 방사기저함수 네트워크의 총 4 개의 기계학습 기법을 선별하였다. 선별한 기계학습 기법을 이용하여 유류유출의 탐지와 바람, 강우량, 오존 등의 기상 데이터를 예측하는 연구들의 연구 방법과 결과 등을 설명하며 이를 활용한 기계학습 기반 유류유출 예측 모델의 적용 가능성을 제시한다.

Keywords

References

  1. McCloskey, D. N. "The art of forecasting: From ancient to modern times." Cato J. 12, pp.23-43, 1993.
  2. Zschau, J., and Kuppers, A. N. eds. Early Warning Systems for Natural Disaster Reduction. Springer Science & Business Media, 2013.
  3. Xie, P., and Arkin, P. A. "Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions." Journal of climate Vol. 9, No. 4, pp.840-858, 1996. https://doi.org/10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2
  4. Adeli, H., and Panakkat, A. "A probabilistic neural network for earthquake magnitude prediction." Neural networks Vol. 22, No. 7, pp.1018-1024, 2009. https://doi.org/10.1016/j.neunet.2009.05.003
  5. H. H. Lee, S. H. Chung, E. J. Choi, "A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm", Journal of Digital Convergence, Vol. 14, No. 2, pp.245-258, 2016. https://doi.org/10.14400/JDC.2016.14.2.245
  6. Y. D. Yun, Y. Wook. Yang, H. S. Ji, H. S. Lim, "Development of Smart Senior Classification Model based on Activity Profile Using Machine Learning Method", Journal of the Korea Convergence Society, Vol. 8, No. 1, pp.25-34, 2017. https://doi.org/10.15207/JKCS.2017.8.1.025
  7. Matkan, A. A., M. Hajeb, and Z. Azarakhsh. "Oil spill detection from SAR image using SVM based classification." ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. 1. No. 3, pp.55-60, 2013.
  8. Tagliaferri, F., I. M. Viola, and R . G. J. Flay. "Wind direction forecasting with artificial neural networks and support vector machines." Ocean Engineering 97, pp.65-73, 2015. https://doi.org/10.1016/j.oceaneng.2014.12.026
  9. Chang, C. C., and Lin, C. J. "LIBSVM: a library for support vector machines." ACM Transactions on Intelligent Systems and Technology (TIST) Vol. 2, No. 3, pp.27, 2011.
  10. Zhao, P, Xia, J., Dai, Y., and He, J. "Wind speed prediction using support vector regression." 5th IEEE Conference on Industrial Electronics and Applications. IEEE, 2010.
  11. Yoo, C. S., and Park, J. Y. "Combining radar and rain gauge observations utilizing Gaussian-process-based regression and support vector learning." Journal of Korean Institute of Intelligent Systems Vol. 18, No. 3, pp.297-305, 2008. https://doi.org/10.5391/JKIIS.2008.18.3.297
  12. Petelin, D., Mlakar, P., Boznar, M. Z., Grasic, B. and Kocijan, J. "Ozone forecasting using Gaussian processes and perceptron neural networks", 16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 2014.
  13. Liu, J. N., Hu, Y., He, Y., Chan, P. W. and Lai, L. "Deep neural network modeling for big data weather forecasting." Information Granularity, Big Data, and Computational Intelligence. Springer International Publishing, pp.389-408, 2015.
  14. Dalto, M., Vasak, M., Baotic, M., Matusko, J., and Horvath, K. "Neural-network-based ultra-short-term wind forecasting." European Wind Energy Association 2014 Annual Event 2014.
  15. Yang, L., Tian, S., Yu, L., Ye, F., Qian, J., and Qian, Y. "Deep learning for extracting water body from Landsat imagery." International Journal of Innovative Computing, Information and Control Vol. 11, No. 6, 2015.
  16. Baruque, B., Corchado, E., Mata, A., and Corchado, J. M. "forecasting solution to the oil spill problem based on a hybrid intelligent system." Information Sciences Vol. 180, No.10, pp.2029-2043, 2010. https://doi.org/10.1016/j.ins.2009.12.032
  17. Topouzelis, K., Karathanassi, V., Pavlakis, P., and Rokos, D. "Potentiality of feed -forward neural networks for classifying dark formations to oil spills and look-alikes." Geocarto International Vol. 24, No. 3, pp.179-191, 2009. https://doi.org/10.1080/10106040802488526
  18. Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, S. and Khoshnevisan, B. "Potential of radial basis function based support vector regression for global solar radiation prediction." Renewable and Sustainable Energy Reviews 39, pp.1005-1011, 2014. https://doi.org/10.1016/j.rser.2014.07.108