DOI QR코드

DOI QR Code

Change of Hydrolysis Rate on Hydrogenated Palm Kernel Oil and Shea Butter Blendings Using In Vitro Digestion System

In Vitro Digestion에서 팜핵경화유와 시어버터 혼합 비율에 따른 가수분해율 변화

  • Lee, Hyeon-Hwa (Department of Food Science and Technology, Chungnam National University) ;
  • Shin, Jung-Ah (Department of Food Science and Technology, Chungnam National University) ;
  • Lee, Ki-Teak (Department of Food Science and Technology, Chungnam National University)
  • 이현화 (충남대학교 식품공학과) ;
  • 신정아 (충남대학교 식품공학과) ;
  • 이기택 (충남대학교 식품공학과)
  • Received : 2017.06.26
  • Accepted : 2017.08.28
  • Published : 2017.10.31

Abstract

In this study, the hydrolysis rate of palm kernel oil (HPKO) and shea butter were compared by in vitro digestion to develop low-digestible fats. HPKO exhibited a higher hydrolysis rate than shea butter. The initial rate and ${\Phi}max$ value of HPKO were 0.315 mM/s and 78.0%, while the corresponding values for shea butter were 0.117 mM/s and 41.4%. When the two fats were blended at various ratios, the hydrolysis rate, in terms of the ${\Phi}max$ value, was similar to that of shea butter until 2:8 (HPKO : shea butter, w/w). After the analysis of triacylglycerol species and the positional fatty acid composition, the factors that affected the hydrolysis rate were determined. The results suggest that the low hydrolysis rate of shea butter would be due mostly to the stearic acid located at the sn-1,3 positions of triacylglycerol molecules. These properties of shea butter are expected to be the nutritional benefits as a low-digestible fat in foods.

본 실험은 가공식품에서 폭넓게 이용되고 있는 식용유지인 hydrogenated palm kernel oil(HPKO)과 대칭형 triacylglycerol(TAG)로 주로 구성된 shea butter 및 두 유지의 blends를 대상으로 가수분해율을 비교하여 어떤 특성이 가수분해율에 영향을 미치는지를 살펴보고자 하였다. 녹는 온도가 서로 유사한 HPKO와 shea butter의 blending 비율을 다르게 할 경우 in vitro digestion에 의한 가수분해율에 차이가 있는지를 알아보았다. Shea butter의 complete melting point는 $34.5^{\circ}C$였으며, HPKO는 $39.5^{\circ}C$였다. In vitro digestion 실험 결과 shea butter blending 비율이 높아질수록 가수분해율이 낮아졌으며 2:8, 1:9(HPKO : shea butter) blending 유지는 shea butter와 비슷한 가수분해율을 보였다. HPKO에서 유래된 medium chain triacylglycerol(MCT)로 이뤄진 medium-medium-medium(MMM)은 가수분해율과 양의 상관관계를 나타냈으나 shea butter에서 유래하는 long chain fatty acid로 구성된 saturated-unsaturated-saturated(SUS)나 saturated-saturated-unsaturated(SSU)는 유지의 가수분해와 음의 상관관계를 가졌다. 또한, HPKO에서 유래된 lauric acid, myristic acid와 palmitic acid는 TAG 내 위치에 상관없이 함량이 높아질수록 가수분해율이 높아졌으며, shea butter에서 유래되고 비교적 탄소수가 긴 oleic acid의 경우 분포되는 위치에 상관없이 유지 내 함량이 많을수록 가수분해율이 낮아지는 음의 상관관계를 나타내었다. 반면 stearic acid의 경우에는 sn-1, 3에 위치한 함량에 따라 가수분해가 저해되는 경향을 보였다. 인체 내에서의 소화 과정은 매우 복잡하고 많은 요인의 영향을 받기 때문에 단편적으로 어떤 유지 특성들이 가수분해율에 영향을 미치는지 단언할 수 없다. 그런데도 본 실험에서의 결과는 난 소화성 유지 개발의 기초자료로 사용될 수 있고, 식품 산업에 이용될 때 영양학적으로 유익한 효과를 기대할 수 있을 것으로 생각된다.

Keywords

References

  1. Ministry of Health and Welfare. 2015. Korea Health Statistics 2015: Korea National Health and Nutrition Examination Survey (KNHANES VI-3). Korea Centers for Disease Control and Prevention, Cheongju, Korea.
  2. Birari RB, Bhutani KK. 2007. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discovery Today 12: 879-889. https://doi.org/10.1016/j.drudis.2007.07.024
  3. Iqbal J, Hussain MM. 2009. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296: E1183-E1194. https://doi.org/10.1152/ajpendo.90899.2008
  4. Lykidis A, Mougios V, Arzoglou P. 1995. Kinetics of the two-step hydrolysis of triacylglycerol by pancreatic lipases. Eur J Biochem 230: 892-898. https://doi.org/10.1111/j.1432-1033.1995.tb20633.x
  5. Sek L, Porter CJH, Kaukonen AM, Charman WN. 2002. Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol 54: 29-41. https://doi.org/10.1211/0022357021771896
  6. Hur SJ, Joo ST, Lim BO, Decker EA, McClements JD. 2011. Impact of salt and lipid type on in vitro digestion of emulsified lipids. Food Chem 126: 1559-1564. https://doi.org/10.1016/j.foodchem.2010.12.003
  7. Giang TM, Gaucel S, Brestaz P, Anton M, Meynier A, Trelea IC, Le Feunteun S. 2016. Dynamic modeling of in vitro lipid digestion: Individual fatty acid release and bioaccessibility kinetics. Food Chem 194: 1180-1188. https://doi.org/10.1016/j.foodchem.2015.08.125
  8. Mun S, Decker EA, Park Y, Weiss J, McClements DJ. 2006. Influence of interfacial composition on in vitro digestibility of emulsified lipids: potential mechanism for chitosan's ability to inhibit fat digestion. Food Biophys 1: 21-29. https://doi.org/10.1007/s11483-005-9001-0
  9. Sek L, Porter CJH, Charman WN. 2001. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densitometric analysis. J Pharm Biomed Anal 25: 651-661. https://doi.org/10.1016/S0731-7085(00)00528-8
  10. Bonnaire L, Sandra S, Helgason T, Decker EA, Weiss J, McClements DJ. 2008. Influence of lipid physical state on the in vitro digestibility of emulsified lipids. J Agric Food Chem 56: 3791-3797. https://doi.org/10.1021/jf800159e
  11. Hunter JE. 2001. Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 36: 655-668. https://doi.org/10.1007/s11745-001-0770-0
  12. Zhu X, Ye A, Verrier T, Singh H. 2013. Free fatty acid profiles of emulsified lipids during in vitro digestion with pancreatic lipase. Food Chem 139: 398-404. https://doi.org/10.1016/j.foodchem.2012.12.060
  13. Goh EM. 2002. Applications and uses of palm and palm kernel oils in speciality products. Malaysian Oil Science and Technology 11: 46-50.
  14. Mozaffarian D, Micha R, Wallace S. 2010. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 7: e1000252. https://doi.org/10.1371/journal.pmed.1000252
  15. Micha R, Mozaffarian D. 2010. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids 45: 893-905. https://doi.org/10.1007/s11745-010-3393-4
  16. German JB, Dillard CJ. 2004. Saturated fats: what dietary intake?. Am J Clin Nutr 80: 550-559. https://doi.org/10.1093/ajcn/80.3.550
  17. McNeill GP. 2009. Saturated fats and the risk of heart disease. Inform 20: 340-341.
  18. Di Vincenzo D, Maranz S, Serraiocco A, Vito R, Wiesman Z, Bianchi G. 2005. Regional variation in shea butter lipid and triterpene composition in four African countries. J Agric Food Chem 53: 7473-7479. https://doi.org/10.1021/jf0509759
  19. Israel MO. 2014. Effects of topical and dietary use of Shea butter on animals. Am J Life Sci 2: 303-307. https://doi.org/10.11648/j.ajls.20140205.18
  20. Lovett PN. 2005. Shea butter industry expanding in West Africa. Inform 16: 273-275.
  21. Malachi OI, Ajayi OB, Akomolafe SF. 2014. Effects of shea butter based diet on hepatic and renal enzymes and plasma lipid profile in albino rats. Adv Biochem 2: 80-84. https://doi.org/10.11648/j.ab.20140205.15
  22. AOCS. 1990. Official methods and recommended practices of the AOCS. 4th ed. American Oil Chemists' Society, Champaign, IL, USA. Method Cc1-25.
  23. Ministry of Food and Drug Safety. 2016. Food Code. Cheongju, Korea.
  24. Lee JH, Son JM, Akoh CC, Kim MR, Lee KT. 2010. Optimized synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase from Thermomyces lanuginosus. New Biotechnol 27: 38-45. https://doi.org/10.1016/j.nbt.2009.10.006
  25. Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJM, Sips AJAM. 2005. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 43: 31-40. https://doi.org/10.1016/j.fct.2004.08.007
  26. Li Y, McClements DJ. 2010. New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. J Agric Food Chem 58: 8085-8092. https://doi.org/10.1021/jf101325m
  27. Arishima T, Tachibana N, Kojima M, Takamatsu K, Imaizumi K. 2009. Screening of resistant triacylglycerols to the pancreatic lipase and their potentialities as a digestive retardant. J Food Lipids 16: 72-88. https://doi.org/10.1111/j.1745-4522.2009.01133.x
  28. Redgrave TG, Kodali DR, Small DM. 1988. The effect of triacyl-sn-glycerol structure on the metabolism of chylomicrons and triacylglycerol-rich emulsions in the rat. J Biol Chem 263: 5118-5123.
  29. Brink EJ, Haddeman E, de Fouw NJ, Weststrate JA. 1995. Positional distribution of stearic acid and oleic acid in a triacylglycerol and dietary calcium concentration determines the apparent absorption of these fatty acids in rats. J Nutr 125: 2379-2387. https://doi.org/10.1093/jn/125.9.2379
  30. Hyeon JW, Lee KT. 2013. Enzymatic synthesis of asymmetric structured lipids containing 1,2-disaturated-3-unsaturated glycerol using acyl migration. CNU J Agric Sci 40: 367-375.
  31. Lipp M, Anklam E. 1998. Review of cocoa butter and alternative fats for use in chocolate-Part A. Compositional data. Food Chem 62: 73-97. https://doi.org/10.1016/S0308-8146(97)00160-X
  32. Karupaiah T, Sundram K. 2007. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr Metab 4: 16. https://doi.org/10.1186/1743-7075-4-16
  33. Mattil KF, Higgins JW. 1945. The relationship of glyceride structure to fat digestibility. I. Synthetic glycerides of stearic and oleic acids. J Nutr 29: 255-260. https://doi.org/10.1093/jn/29.4.255
  34. Siew WL. 2001. Crystallisation and melting behaviour of palm kernel oil and related products by differential scanning calorimetry. Eur J Lipid Sci Technol 103: 729-734. https://doi.org/10.1002/1438-9312(200111)103:11<729::AID-EJLT729>3.0.CO;2-L
  35. Livesey G. 2000. The absorption of stearic acid from triacylglycerols: an inquiry and analysis. Nutr Res Rev 13: 185-214.