DOI QR코드

DOI QR Code

Effect of Heated-Kimchi Addition on the Physicochemical Characteristics and Antioxidant Activity of Gratin

열처리된 김치 첨가가 그라탱의 이화학적 품질 특성과 항산화 활성에 미치는 영향

  • Kim, Taejoon (Department of Food and Nutrition, Kangwon National University) ;
  • Surh, Jeonghee (Department of Food and Nutrition, Kangwon National University)
  • 김태준 (강원대학교 식품영양학과) ;
  • 서정희 (강원대학교 식품영양학과)
  • Received : 2017.07.03
  • Accepted : 2017.08.25
  • Published : 2017.10.31

Abstract

Two types of kimchi with a different total acidity (TA, 0.75% or 1.19%) were heated at $100^{\circ}C$ for up to 60 min to develop a gratin added with heated-kimchi. Their browning index and color intensity increased with increasing heating time, which was more apparent for the kimchi with the higher TA. This was attributed to the Maillard reaction facilitated at a higher heat intensity and by the smaller fermentation products. The same tendency was also observed for the antioxidant activities determined by the total reducing capacity, metal-chelating activity, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. In particular, heating kimchi at $100^{\circ}C$ only for 10 min increased the activities significantly. Therefore, the heated-kimchi was added to gratin at 20%. With the addition, the dietary fiber, ${\gamma}-aminobutyric$ acid (GABA) and ornithine contents in the gratin were increased appreciably (P<0.01). Nevertheless, there was little change in its salinity. The antioxidant activities of the gratin were significantly (P<0.001) higher than the control gratin without kimchi, with DPPH radical scavenging activity being 3.6 times higher. The results suggest that the functionality of kimchi could be effectually added to gratin even after heat treatment.

그라탱과 김치의 퓨전을 위해 먼저 열처리가 김치의 항산화 활성에 미치는 영향을 살펴보았다. 김치를 $100^{\circ}C$에서 최대 60분까지 열처리하였을 때 가열시간이 길어질수록 김치의 갈변도와 색 강도는 유의적으로 증가하였으며 이 현상은 상대적으로 숙성이 더 진행된 김치에서 뚜렷하게 관찰되었다. 이는 김치 숙성에 따른 고분자 물질의 분해와 고온에서 가속화된 Maillard 갈변반응의 결과로 해석되었다. 총 환원력, 금속 소거능, DPPH 라디칼 소거 활성으로 측정된 김치의 항산화 활성 역시 가열시간이 길수록, 숙성이 진행될수록 증가하는 경향을 나타내었다. 이는 숙성과 열처리로 증가한 김치 속 비당체 형태의 페놀과 Maillard 반응 생성물(Maillard Reaction Products)의 환원성에서 기인한 것으로 보인다. 특히 $100^{\circ}C$, 10분 동안의 열처리에도 김치의 항산화 활성이 유의적으로 증가하였으며, 따라서 이 조건으로 가열한 김치를 20% 농도로 첨가하여 그라탱을 제조하였다. 열처리 김치첨가로 그라탱은 식이섬유, GABA, 오르니틴 함량이 유의적으로 증가하였다. 반면 김치 첨가로 우려되는 염 함량의 실질적 변화는 관찰되지 않았다. 열처리 김치에서 확인된 항산화 활성이 그라탱에서도 동일하게 관찰됨에 따라 김치의 항산화 기능성이 열처리 후에도 그라탱에 부가되었음을 확인해주었다. 이 결과들은 김치 그라탱 제조로 전통 발효식품인 김치의 영양성과 기능성이 그라탱에 실질적으로 부가되었음을 보여주었다. 이는 서구 음식과 우리 전통 발효 음식과의 다양한 퓨전을 통한 건강 지향적 제품 개발의 가능성을 시사해준다.

Keywords

References

  1. Foodnews. Home Meal Replacement Market to Surge by 51% During Recent 5 Years. www.foodnews.co.kr/news/arti clePrint.html?idxno=62026 (accessed Jun 2017).
  2. Korea Centers for Disease Control and Prevention (KCDC). 2016. The 12th Korea youth risk behavior web-based survey 2016. KCDC, Cheongju, Korea. p 20-21.
  3. Nam HM, Choi MJ. 2014. Prevalence of metabolic syndrome and metabolic abnormalities in Korea children and adolescents and nutrient intakes-Using 2008 the Korea National Health and Nutrition Examination Survey. Korean J Community Nutr 19: 133-141. https://doi.org/10.5720/kjcn.2014.19.2.133
  4. Lee H, Na Y, Cho MS. 2016. Development and evaluation of Dietary Education Program focused on slow life in school children. J Korean Soc Food Cult 31: 111-120. https://doi.org/10.7318/KJFC/2016.31.2.111
  5. Park KY, Jeong JK, Lee YE, Daily JW 3rd. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 17: 6-20. https://doi.org/10.1089/jmf.2013.3083
  6. Shin D, Jeong D. 2015. Korean traditional fermented soybean products: Jang. J Ethnic Foods 2: 2-7. https://doi.org/10.1016/j.jef.2015.02.002
  7. Lee JS, Kim SJ. 2010. A comparative study on cognition and preference of Korean traditional food classified by age in Busan. Korean J Community Nutr 15: 351-360.
  8. Paek HY, Kwak EJ, Joung HS, Jeong JH, Cho YS. 2015. Study on university student's awareness of traditional and Yaksun foods: Focus on university students majoring in culinary art and foodservice Daegu and Gyungbuk area. J East Asian Soc Diet Life 25: 779-790. https://doi.org/10.17495/easdl.2015.10.25.5.779
  9. Jin Y, Cho J. 2007. The effect of the next generation's recognition of traditional food on the popularization of foodservice industry. Korean J Culinary Res 13: 1-11.
  10. Wikipedia. Gratin. https://en.wikipedia.org/wiki/Gratin (accessed Jun 2017).
  11. Brecht JK, Ritenour MA, Haard NF, Chism GW. 2008. Postharvest physiology of edible plant tissues. In Food Chemistry. Damodaran S, Parkin KL, Fennema OR, eds. CRC Press, Boca Raton, FL, USA. p 975-1049.
  12. Park KY, Ha JO, Rhee SH. 1996. A study ion the contents of dietary fibers and crude fiber in kimchi ingredients and kimchi. J Korean Soc Food Nutr 25: 69-75.
  13. Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, Suh HJ, Chang UJ, Yang CY, Kim JM. 2011. Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J Biosci Bioeng 112: 356-359. https://doi.org/10.1016/j.jbiosc.2011.06.003
  14. Park SY, Shim HY, Kim KS, Lim SD. 2013. Physiological characteristics and GABA production of Lactobacillus plantarum K74 isolated from kimchi. Korean J Dairy Sci Technol 31: 143-152.
  15. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. 2001. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci Technol 11: 340-346.
  16. Kim T, Surh J. 2016. Physicochemical properties and antioxidant activities of kimchi-added croquette. J East Asian Soc Diet Life 26: 498-506. https://doi.org/10.17495/easdl.2016.12.26.6.498
  17. Burdurlu HS, Karadeniz F. 2003. Effect of storage on nonenzymatic browning of apple juice concentrates. Food Chem 80: 91-97. https://doi.org/10.1016/S0308-8146(02)00245-5
  18. Lee YC, Son JY, Kim KT, Kim SS. 1994. Antioxidant activity of solvent extract isolated from barley leaves. Korean J Food Nutr 7: 332-337.
  19. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299: 152-178.
  20. Chew YL, Goh JK, Lim YY. 2009. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem 116: 13-18. https://doi.org/10.1016/j.foodchem.2009.01.091
  21. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT -Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  22. AOAC. 1990. Official methods of analysis. Association of Official Analytical Chemists, Washington, DC, USA. Method 984.13,991.42.
  23. Ha JH, Hawer WS, Kim YJ, Nam YJ. 1989. Changes of free sugars in Kimchi during fermentation. Korean J Food Sci Technol 21: 633-638.
  24. Lee HH, Kim GH. 2013. Changes in the levels of $\gamma$-aminobutyric acid and free amino acids during kimchi fermentation. Korean J Food Cookery Sci 29: 671-677. https://doi.org/10.9724/kfcs.2013.29.6.671
  25. Sikorski ZE, Pokorny J, Damodaran S. 2008. Physical and chemical interaction of components in food systems. In Food Chemistry. Damodaran S, Parkin KL, Fennema OR, eds. CRC Press, Boca Raton, FL, USA. p 849-883.
  26. Cho YH, Imm JY, Kim HY, Hong SG, Hwang SJ, Park DJ, Oh S. 2009. Isolation and partial characterization of isoflavone transforming Lactobacillus plantarum YS712 for potential probiotic use. Korean J Food Sci Ani Resour 29: 640-646. https://doi.org/10.5851/kosfa.2009.29.5.640
  27. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  28. Juaniz I, Ludwig IA, Huarte E, Pereira-Caro G, Moreno-Rojas JM, Cid C, De Pena MP. 2016. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables. Food Chem 197: 466-473. https://doi.org/10.1016/j.foodchem.2015.10.139
  29. National Rural Resources Development Institute. 2006. Food Composition Table. 7th ed. National Rural Resources Development Institute, Suwon, Korea. p 99-163.
  30. Kim EA, Mann SY, Kim SI, Lee GY, Hwang DY, Son HJ, Lee CY, Kim DS. 2013. Isolation and identification of soycurd forming lactic acid bacteria which produce GABA from kimchi. Korean J Food Preserv 20: 705-711. https://doi.org/10.11002/kjfp.2013.20.5.705
  31. Yu MH, Im HG, Im NK, Hwang EY, Choi JH, Lee EJ, Kim JB, Lee IS, Seo HJ. 2009. Anti-hypertensive activities of Lactobacillus isolated from Kimchi. Korean J Food Sci Technol 41: 428-434.
  32. Lee KW, Park JY, Chun J, Han NS, Kim JH. 2010. Importance of Weissella species during kimchi fermentation and future works. Kor J Microbiol Biotechnol 38: 341-348.