DOI QR코드

DOI QR Code

Enzymatic Preparation and Antioxidant Activities of Protein Hydrolysates from Protaetia brevitarsis Larvae

흰점박이꽃무지 유충 단백가수분해물의 제조 및 항산화 활성

  • Lee, Hyo-Seon (Department of Food Science and Technology, Keimyung University) ;
  • Ryu, Hee-Jeong (Department of Food Science and Technology, Keimyung University) ;
  • Song, Hyeon-Ji (Department of Food Science and Technology, Keimyung University) ;
  • Lee, Syng-Ook (Department of Food Science and Technology, Keimyung University)
  • 이효선 (계명대학교 식품가공학과) ;
  • 류희정 (계명대학교 식품가공학과) ;
  • 송현지 (계명대학교 식품가공학과) ;
  • 이승욱 (계명대학교 식품가공학과)
  • Received : 2017.07.24
  • Accepted : 2017.08.26
  • Published : 2017.10.31

Abstract

Protaetia brevitarsis larvae (PBL) has recently been registered as a temporary food in Korea, and this study evaluated the application potential of PBL proteins as health functional food materials. Protein hydrolysates were prepared from PBL powder by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain), and based on the results from the peptide content and SDS-PAGE analyses, PBL treated with alcalase or flavourzyme showed a high degree of hydrolysis (HD) value, whereas the HD value of those treated with neutrase, bromelain, or papain was minimal. The protein hydrolysates showing a high HD value were separated further into the fractions of >3 kDa and <3 kDa by a centrifugal filter system and then lyophilized, and according to the $RC_{50}$ values of the protein hydrolysates (<3 kDa) obtained from three different antioxidant analyses; the alcalase hydrolysates showed the highest antioxidant activity. Therefore, the alcalase hydrolysates were tested further for their inhibitory effects on the peroxidation of linoleic acid by measuring the thiobarbituric acid values. The results showed that the peroxidation of untreated linoleic acid increased dramatically during 6 days of incubation, but a pretreatment with the hydrolysates ($100{\sim}800{\mu}g/mL$) significantly inhibited the linoleic acid peroxidation in a dose-dependent manner for 6 days. Our current studies are focused on the identification of active peptide sequences from alcalase hydrolysates.

흰점박이꽃무지 유충 분말을 4%(w/v)의 기질용액으로 제조한 후, 기질 대비 단백질 가수분해효소(alcalase, bromelain, flavourzyme, neutrase, bromelain, papain)를 각각 1%(w/w) 첨가하여 24시간 가수분해시킨 단백가수분해물을 제조하였으며, 각 효소별 가수분해물의 특성과 가수분해도를 알아보기 위해 24시간째의 가수분해물을 이용하여 SPS-PAGE를 진행하였고, 시간에 따른 가수분해도를 알아보기 위해 TNBS assay를 실시하였다. SDS-PAGE 결과 alcalase 단백 가수분해물이 10 kDa 이상의 대부분의 단백질을 분해시켰으며, flavourzyme 효소는 10 kDa 이하의 펩타이드를 분해시켜 available amino group 함량이 9.99 mg/mL로 가장 높게 나타났다. Available amino group의 농도가 높게 나타난 alcalase(9.35 mg/mL), flavourzyme(9.99 mg/mL), neutrase(7.60 mg/mL) 단백가수분해물을 한외여과막을 통해 분자량이 3 kDa 이하로 분리한 후 동결건조하였으며, 동결 건조물을 이용하여 항산화 실험을 수행하였다. 각 효소별 단백가수분해물의 DPPH 라디칼 소거활성 $RC_{50}$값은 neutrase $131.43{\mu}g/mL$, flavourzyme $149.28{\mu}g/mL$, alcalase $151.99{\mu}g/mL$로 neutrase 단백가수분해물의 항산화 활성이 가장 우수하였으며(P<0.05), ABTS 라디칼 소거활성은 alcalase $34.59{\mu}g/mL$, neutrase $42.49{\mu}g/mL$, flavourzyme $44.34{\mu}g/mL$ 순으로 alcalase가 우수한 항산화 활성을 나타냈다(P<0.05). Hydrogen peroxide 소거활성은 alcalase 단백가수분해물의 $RC_{50}$값이 $46.31{\mu}g/mL$, neutrase $58.16{\mu}g/mL$, flavourzyme $59.30{\mu}g/mL$로 alcalase 가수분해물이 우수한 항산화 활성을 나타냈다(P<0.05). 상기 3가지 항산화 실험에서 우수한 항산화 활성을 보였으며 저분자 펩타이드 생산 효율이 52.91%로 가장 높았던 alcalase 단백가수분해물(3 kDa 이하)을 이용해 linoleic acid에 대한 지질과산화 억제 활성을 측정한 결과, 6일 동안 $100{\sim}800{\mu}g/mL$의 농도에서 처리 농도에 의존적으로 유의적인 항산화능을 보였다. 최종적으로 본 연구에서는 고단백질 소재인 흰점박이꽃무지 유충을 이용하여 단백가수분해물의 제조 특성 및 우수한 항산화 활성을 확인하였으며, 이 결과들은 향후 식용곤충을 활용한 새로운 기능성 식품 및 소재 개발 등에 활용될 수 있을 것이라 예상된다.

Keywords

References

  1. van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome, Italy.
  2. Yun EY, Hwang JS. 2016. Status and prospect for development of insect foods. Food Science and Industry 49(4): 31-39.
  3. Kim HG, Kang KH. 2005. Bionomical characteristic of Protaetia brevitarsis. Korean J Appl Entomol 44: 139-144.
  4. Kwon EY, Yoo J, Yoon YI, Hwang JS, Goo TW, Kim MA, Choi YC, Yun EY. 2013. Pre-treatment of the white-spotted flower chafer (Protaetia brevitarsis) as an ingredient for novel foods. J Korean Soc Food Sci Nutr 42: 397-402. https://doi.org/10.3746/jkfn.2013.42.3.397
  5. Chung MY, Hwang JS, Goo TW, Yun EY. 2013. Analysis of general composition and harmful material of Protaetia brevitarsis. J Life Sci 23: 664-668. https://doi.org/10.5352/JLS.2013.23.5.664
  6. Bukkens SGF. 1997. The nutritional value of edible insects. Ecol Food Nutr 36: 287-319. https://doi.org/10.1080/03670244.1997.9991521
  7. Kang IJ, Kim HK, Chumg CK, Kim SJ, Oh D. 2000. Effects of Protaetia Orientalis (Gory et Perchlon) larva on the lipid metabolism in ethanol administered rats. J Korean Soc Food Sci Nutr 6: 479-484.
  8. Kwon EY, Yoo J, Yoon YI, Hwang JS, Goo TW, Kim MA, Choi YC, Yun EY. 2013. Pre-treatment of the white-spotted flower chafer (Protaetia brevitarsis) as an ingredient for novel foods. J Korean Soc Food Sci Nutr 42: 397-402. https://doi.org/10.3746/jkfn.2013.42.3.397
  9. Park JH, Kim SY, Kang M, Yoon M, Lee Y, Park E. 2012. Antioxidant activity and safety evaluation of juice containing Protaetia brevitarsis. J Korean Soc Food Sci Nutr 41: 41-48. https://doi.org/10.3746/jkfn.2012.41.1.041
  10. Hwang SY, Kim YB, Lee SH, Yun CY. 2005. Preventive effect of a chafer, Protaetia brevitarsis extract on carbon tetrachloride-induced liver injuries in rats. Korean J Oriental Physiol Pathol 19: 1337-1343.
  11. Kitts DD, Weiler K. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9: 1309-1323. https://doi.org/10.2174/1381612033454883
  12. Pihlanto-Leppala A. 2000. Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci Technol 11: 347-356. https://doi.org/10.1016/S0924-2244(01)00003-6
  13. Arihara K, Nakashima Y, Mukai T, Ishikawa S, Itoh M. 2001. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci 57: 319-324. https://doi.org/10.1016/S0309-1740(00)00108-X
  14. Pihlanto A. 2006. Antioxidative peptides derived from milk proteins. Int Dairy J 16: 1306-1314. https://doi.org/10.1016/j.idairyj.2006.06.005
  15. Mine Y, Ma F, Lauriau S. 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem 52: 1088-1094. https://doi.org/10.1021/jf0345752
  16. Chabance B, Jolles P, Izquierdo C, Mazoyer E, Francoual C, Drouet L, Fiat AM. 1995. Characterization of an antithrombotic peptide from $\alpha$-casein in newborn plasma after milk ingestion. Br J Nutr 73: 583-590. https://doi.org/10.1079/BJN19950060
  17. Lee SH, Song KB. 2003. Isolation of an angiotensin converting enzyme inhibitory peptide from irradiated bovine blood plasma protein hydrolysates. J Food Sci 68: 2469-2472. https://doi.org/10.1111/j.1365-2621.2003.tb07047.x
  18. Pan D, Lu H, Zeng X. 2013. A newly isolated Ca binding peptide from whey protein. Int J Food Prop 16: 1127-1134. https://doi.org/10.1080/10942912.2011.576361
  19. Yu MH, Lee HS, Cho HR, Lee SO. 2017. Enzymatic preparation and antioxidant activities of protein hydrolysates from Tenebrio molitor larvae (mealworm). J Korean Soc Food Sci Nutr 46: 435-441. https://doi.org/10.3746/jkfn.2017.46.4.435
  20. Ham H, Woo KS, Lee B, Park JY, Sim EY, Kim BJ, Lee C, Kim SJ, Kim WH, Lee J, Lee YY. 2015. Antioxidant compounds and activities of methanolic extracts from oat cultivars. J Korean Soc Food Sci Nutr 44: 1660-1665. https://doi.org/10.3746/jkfn.2015.44.11.1660
  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  22. Korhonen H, Pihlanto A. 2003. Food-derived bioactive peptides: Opportunities for designing future foods. Curr Pharm Des 9: 1297-1308. https://doi.org/10.2174/1381612033454892
  23. Torres-Fuentes C, Alaiz M, Vioque J. 2011. Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chem 129: 485-490. https://doi.org/10.1016/j.foodchem.2011.04.103
  24. Kim SK, Choi YR, Park PJ, Choi JH, Moon SH. 2000. Purification and characterization of antioxidative peptides from enzymatic hydrolysate of cod teiset protein. J Korean Fish Soc 33: 198-204.
  25. Choi DW, Kim NH, Son KB. 2013. Isolation of iron-binding peptides from sunflower (Helianthus annuus L.) seed protein hydrolysates. J Korean Soc Food Sci Nutr 42: 1162-1166. https://doi.org/10.3746/jkfn.2013.42.7.1162
  26. Yoo KM, Kim DO, Lee CY. 2007. Evaluation of different methods of antioxidant measurement. Food Sci Biotechnol 16: 177-182.
  27. Finkel T, Holbrook NJ. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. https://doi.org/10.1038/35041687
  28. Martindale JL, Holbrook NJ. 2002. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192: 1-15. https://doi.org/10.1002/jcp.10119
  29. Kim D, Pak JI, Chae HS, Kim YB, Jang A. 2013. Antioxidation effect of leg bone extracts and enzyme hydrolysates from Jeju crossbred horses (Jeju native horse$\times$thoroughbred). J Life Sci 23: 1147-1154. https://doi.org/10.5352/JLS.2013.23.9.1147
  30. Yoon WJ, Lee JA, Kim JY, Kim SB, Park SY. 2007. Antioxidant activity and physiological function of the Anomala albopilosa extracts. J Korean Soc Food Sci Nutr 36: 670-677. https://doi.org/10.3746/jkfn.2007.36.6.670
  31. Yu JS, Woo KS, Hwang IG, Lee YR, Kang TS, Jeong HS. 2008. ACE inhibitory and antioxidative activities of silkworm larvae (Bombyx mori) hydrolysate. J Korean Soc Food Sci Nutr 37: 136-140. https://doi.org/10.3746/jkfn.2008.37.2.136
  32. Ambigaipalan P, Al-Khalifa AS, Shahidi F. 2015. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using alcalase, flavourzyme and thermolysin. J Funct Foods 18: 1125-1137. https://doi.org/10.1016/j.jff.2015.01.021
  33. Lee SH, Lee SO. 2016. Polyphenol contents and antioxidant activities of lentil extracts from different cultivars. J Korean Soc Food Sci Nutr 45: 973-979. https://doi.org/10.3746/jkfn.2016.45.7.973

Cited by

  1. Drug Discovery Insights from Medicinal Beetles in Traditional Chinese Medicine vol.29, pp.2, 2017, https://doi.org/10.4062/biomolther.2020.229
  2. Nutritional Composition of White-Spotted Flower Chafer (Protaetia brevitarsis) Larvae Produced from Commercial Insect Farms in Korea vol.41, pp.3, 2017, https://doi.org/10.5851/kosfa.2021.e7