DOI QR코드

DOI QR Code

Application of Transposable Elements as Molecular-marker for Cancer Diagnosis

암 진단 분자 마커로서 이동성 유전인자의 응용

  • Kim, Hyemin (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Gim, Jeong-An (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Woo, Hyojeong (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Hong, Jeonghyeon (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Jinyeop (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • 김혜민 (부산대학교 자연과학대학 생명과학과) ;
  • 김정안 (부산대학교 자연과학대학 생명과학과) ;
  • 우효정 (부산대학교 자연과학대학 생명과학과) ;
  • 홍정현 (부산대학교 자연과학대학 생명과학과) ;
  • 김진엽 (부산대학교 자연과학대학 생명과학과) ;
  • 김희수 (부산대학교 자연과학대학 생명과학과)
  • Received : 2017.08.28
  • Accepted : 2017.10.26
  • Published : 2017.10.30

Abstract

Until now, various oncogenic pathways were idenfied. The accumulation of DNA mutation induces genomic instability in the cell, and it makes cancer. The development of bioinformatics and genomics, to find the precise and reliable biomarker is available. This biomarker could be applied the early-dignosis, prediction and convalescence of cancer. Recently, Transposable elements (TEs) have been attracted as the regulator of genes, because they occupy a half of human genome, and the cause of various diseases. TEs induce DNA mutation, as well as the regulation of gene expression, that makes to cancer development. So, we confirmed the relationship between TEs and colon cancer, and provided the clue for colon cancer biomarker. First, we confirmed long interspersed nuclear element-1 (LINE-1), Alu, and long terminal repeats (LTRs) and their relationship to colon cancer. Because these elements have large composition and enormous effect to the human genome. Interestingly, colon cancer specific patterns were detected, such as the hypomethylation of LINE-1, LINE-1 insertion in the APC gene, hypo- or hypermethylation of Alu, and isoform derived from LTR insertion. Moreover, hypomethylation of LINE-1 in proto-oncogene is used as the biomarker of colon cancer metastasis, and MLH1 mutation induced by Alu is detected in familial or hereditary colon cancer. The genes, effected by TEs, were analyzed their expression patterns by in silico analysis. Then, we provided tissue- and gender-specific expression patterns. This information can provide reliable cancer biomarker, and apply to prediction and diagnosis of colon cancer.

현재까지 다양한 암의 발병 원인이 밝혀졌는데, 그 중 하나로써 DNA에 돌연변이가 축적되어 유전체가 불안정 해짐에 따라 암이 발생될 수 있는 기작들이 주목받고 있다. 생물정보학과 유전체학의 발달에 따라 질병 연구에 있어서 보다 더 정확하고 신뢰성 있는 바이오마커를 찾는 것이 가능해졌다. 따라서, 생물정보학과 유전체학의 연구 기반을 바탕으로 한 암의 바이오마커는 암의 조기진단뿐만 아니라, 더 나아가 암 발생 예측과 암환자의 예후 진단에 적용될 수 있다. 최근 들어 인간 유전체에서 약 45%를 차지하는 이동성 유전인자(transposable elements, TEs)가 유전자의 발현 조절과 DNA의 돌연변이를 유도함으로써 다양한 질병에 영향을 미친다는 사실이 밝혀짐에 따라, 이러한 이동성 유전인자들이 암의 발생과 어떤 연관이 있는지에 대한 연구 또한 활발히 진행되고 있다. 따라서 우리는 이동성 유전인자가 대장암과 어떤 연관성이 있는지에 대해 조사를 하였으며, 이를 어떻게 바이오마커로 활용할 수 있는지 알아보았다. 우선, 이동성 유전인자 중 인간 유전체에 많이 존재하면서 유전체에 많은 영향을 미치는 LINE-1 (long interspersed nuclear element-1, L1)과 Alu, LTR (long terminal repeat) 위주로 확인하였다. 흥미롭게도, 대장암 세포에서 LINE-1의 저메틸화, APC 유전자 내에 LINE-1 삽입, Alu의 저메틸화와 과메틸화, LTR 삽입에 따른 isoform 발생 등이 특징적으로 나타나는 것을 알 수 있었다. 또한 원발암유전자에서의 L1 저메틸화가 대장암 전이의 바이오마커로 쓰일 수 있다는 것과 Alu에 의한 MLH1 돌연변이가 가족성 및 유전성 대장암에서 흔히 발견된다는 것을 알 수 있었다. 이 때 이동성 유전인자에 의하여 영향 받는 유전자들의 발현을 in silico 발현 분석을 통하여 분석하였으며, 조직별, 성별 특이적 발현 양상을 제시하였다. 이들을 토대로 대장암 바이오마커를 개발하여 유전성 대장암의 예측 및 대장암 진단 또는 대장암 예후 예측을 통한 개인 맞춤형 치료에 활용할 수 있을 것으로 예상된다.

Keywords

References

  1. Batzer, M. A. and Deininger, P. L. 2002. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370-379. https://doi.org/10.1038/nrg798
  2. Boxus, M. and Willems, L. 2009. Mechanisms of HTLV-1 persistence and transformation. Br. J. Cancer 101, 1497-1501. https://doi.org/10.1038/sj.bjc.6605345
  3. Chenais, B. 2013. Transposable elements and human cancer: a causal relationship? Biochim. Biophys. Acta-Rev. Cancer 1835, 28-35. https://doi.org/10.1016/j.bbcan.2012.09.001
  4. Chen, J. M., Stenson, P. D., Cooper, D. N. and Ferec, C. 2005. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum. Genet. 117, 411-427. https://doi.org/10.1007/s00439-005-1321-0
  5. Cruickshanks, H. A., Vafadar-Isfahani, N., Dunican, D. S., Lee, A., Sproul, D., Lund, J. N., Meehan, R. R. and Tufarelli, C. 2013. Expression of a large LINE-1-driven antisense RNA is linked to epigenetic silencing of the metastasis suppressor gene TFPI-2 in cancer. Nucleic Acids Res. 41, 6857-6869. https://doi.org/10.1093/nar/gkt438
  6. Feinberg, A. P. and Vogelstein, B. 1983. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92. https://doi.org/10.1038/301089a0
  7. Hulsken, J., Birchmeier, W. and Behrens, J. 1994. E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J. Cell Biol. 127, 2061-2069. https://doi.org/10.1083/jcb.127.6.2061
  8. Hedges, D. and Deininger, P. 2007. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat. Res. 616, 46-59. https://doi.org/10.1016/j.mrfmmm.2006.11.021
  9. Hur, K., Cejas, P., Feliu, J., Moreno-Rubio, J., Burgos, E., Boland, C. R. and Goel, A. 2014. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63, 635-646. https://doi.org/10.1136/gutjnl-2012-304219
  10. Jordan, I. K., Rogozin, I. B., Glazko, G. V. and Koonin, E. V. 2003. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19, 68-72. https://doi.org/10.1016/S0168-9525(02)00006-9
  11. Jung, Y. D., Huh, J. W., Kim, D. S., Kim, Y. J., Ahn, K., Ha, H. S., Lee, J. R., Yi, J. M., Moon, J. W. and Kim, T. O. 2011. Quantitative analysis of transcript variants of CHM gene containing LTR12C element in humans. Gene 489, 1-5. https://doi.org/10.1016/j.gene.2011.09.001
  12. Kazazian, H. H. 2004. Mobile elements: drivers of genome evolution. Science 303, 1626-1632. https://doi.org/10.1126/science.1089670
  13. Kloor, M., Sutter, C., Wentzensen, N., Cremer, F. W., Buckowitz, A., Keller, M., von Knebel Doeberitz, M. and Gebert, J. 2004. A large MSH2 Alu insertion mutation causes HNPCC in a German kindred. Hum. Genet. 115, 432-438. https://doi.org/10.1007/s00439-004-1176-9
  14. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M. and FitzHugh, W. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062
  15. Lerat, E. and Semon, M. 2007. Influence of the transposable element neighborhood on human gene expression in normal and tumor tissues. Gene 396, 303-311. https://doi.org/10.1016/j.gene.2007.04.002
  16. Li, L., McVety, S., Younan, R., Liang, P., Du Sart, D., Gordon, P. H., Hutter, P., Hogervorst, F. B., Chong, G. and Foulkes, W. D. 2006. Distinct patterns of germ line deletions in MLH1 and MSH2: the implication of Alu repetitive element in the genetic etiology of Lynch syndrome (HNPCC). Hum. Mutat. 27, 388-388.
  17. Liang, Q., Ding, J., Xu, R., Xu, Z. and Zheng, S. 2009. Identification of a novel human endogenous retrovirus and promoter activity of its 5′U3. Biochem. Biophys. Res. Commun. 382, 468-472. https://doi.org/10.1016/j.bbrc.2009.03.058
  18. Liang, Q., Xu, Z., Xu, R., Wu, L. and Zheng, S. 2012. Expression patterns of non-coding spliced transcripts from human endogenous retrovirus HERV-H elements in colon cancer. PLoS One 7, e29950. https://doi.org/10.1371/journal.pone.0029950
  19. Lin, X., Stenvang, J., Rasmussen, M. H., Zhu, S., Jensen, N. F., Tarpgaard, L. S., Yang, G., Belling, K., Andersen, C. L. and Li, J. 2015. The potential role of Alu Y in the development of resistance to SN38 (Irinotecan) or oxaliplatin in colorectal cancer. BMC Genomics 16, 404. https://doi.org/10.1186/s12864-015-1552-y
  20. Matlik, K., Redik, K. and Speek, M. 2006. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotecnol. 2006, 71753.
  21. Mauillon, J. L., Michel, P., Limacher, J. M., Latouche, J. B., Dechelotte, P., Charbonnier, F., Martin, C., Moreau, V., Metayer, J. and Paillot, B. 1996. Identification of novel germline hMLH1 mutations including a 22 kb Alu-mediated deletion in patients with familial colorectal cancer. Cancer Res. 56, 5728-5733.
  22. Miki, Y., Nishisho, I., Horii, A., Miyoshi, Y., Utsunomiya, J., Kinzler, K. W., Vogelstein, B. and Nakamura, Y. 1992. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643-645.
  23. Mills, R. E., Bennett, E. A., Iskow, R. C. and Devine, S. E. 2007. Which transposable elements are active in the human genome? Trends Genet. 23, 183-191. https://doi.org/10.1016/j.tig.2007.02.006
  24. Mori, Y., Nagse, H., Ando, H., Horii, A., Ichii, S., Nakatsuru, S., Aoki, T., Miki, Y., Mori, T. and Nakamura, Y. 1992. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229-233. https://doi.org/10.1093/hmg/1.4.229
  25. Moussa, S. A. B., Moussa, A., Lovecchio, T., Kourda, N., Najjar, T., Jilani, S. B., El Gaaied, A., Porchet, N., Manai, M. and Buisine, M. P. 2009. Identification and characterization of a novel MLH1 genomic rearrangement as the cause of HNPCC in a Tunisian family: evidence for a homologous Alu-mediated recombination. Fam. Cancer 8, 119-126. https://doi.org/10.1007/s10689-008-9215-7
  26. National Cancer Center. 2014. Annual report of cancer statistics in Korea in 2013. Goyang, Korea: National Cancer Center.
  27. Nystrom-Lahti, M., Kristo, P., Nicolaides, N. C., Chang, S. Y., Aaltonen, L. A., Moisio, A. L., Jarvinen, H. J., Mecklin, J. P., Kinzler, K. W. and Vogelstein, B. 1995. Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat. Med. 1, 1203-1206. https://doi.org/10.1038/nm1195-1203
  28. Ostertag, E. M. and Kazazian Jr, H. H. 2001. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501-538. https://doi.org/10.1146/annurev.genet.35.102401.091032
  29. Perot, P., Mullins, C. S., Naville, M., Bressan, C., Huhns, M., Gock, M., Kuhn, F., Volff, J. N., Trillet-Lenoir, V. and Linnebacher, M. 2015. Expression of young HERV-H loci in the course of colorectal carcinoma and correlation with molecular subtypes. Oncotarget 6, 40095. https://doi.org/10.18632/oncotarget.5539
  30. Peltomaki, P. 2003. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol. 21, 1174-1179. https://doi.org/10.1200/JCO.2003.04.060
  31. Rodriguez, J., Vives, L., Jorda, M., Morales, C., Munoz, M., Vendrell, E. and Peinado, M. A. 2008. Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res. 36, 770-784. https://doi.org/10.1093/nar/gkm1105
  32. Salmon, A., Clotault, J., Jenczewski, E., Chable, V. and Manzanares-Dauleux, M. J. 2008. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci. 174, 61-70. https://doi.org/10.1016/j.plantsci.2007.09.012
  33. Signorini, L., Villani, S., Bregni, M., Ferrante, P. and Delbue, S. 2016. Do the human endogenous retroviruses play a role in colon cancer? Adv. Tumor Virol. 6, 11. https://doi.org/10.4137/ATV.S29900
  34. Slotkin, R. K. and Martienssen, R. 2007. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272-285.
  35. Suter, C. M., Martin, D. I. and Ward, R. L. 2004. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int. J. Colorectal Dis. 19, 95-101. https://doi.org/10.1007/s00384-003-0539-3
  36. Sverdlov, E. D. 2000. Retroviruses and primate evolution. Bioessays 22, 161-171. https://doi.org/10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X
  37. Swergold, G. D. 1990. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718-6729. https://doi.org/10.1128/MCB.10.12.6718
  38. Swets, M., Zaalberg, A., Boot, A., Van Wezel, T., Frouws, M. A., Bastiaannet, E., Gelderblom, H., Van De Velde, C. J. and Kuppen, P. J. 2016. Tumor LINE-1 methylation level in association with survival of patients with stage II colon cancer. Int. J. Mol. Sci. 18, 36. https://doi.org/10.3390/ijms18010036
  39. Thorsen, K., Sorensen, K. D., Brems-Eskildsen, A. S., Modin, C., Gaustadnes, M., Hein, A. M. K., Kruhoffer, M., Laurberg, S., Borre, M. and Wang, K. 2008. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol. Cell. Proteomics 7, 1214-1224. https://doi.org/10.1074/mcp.M700590-MCP200
  40. Umar, A., Buermeyer, A. B., Simon, J. A., Thomas, D. C., Clark, A. B., Liskay, R. M. and Kunkel, T. A. 1996. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65-73. https://doi.org/10.1016/S0092-8674(00)81323-9
  41. van den Hurk, J. A., van de Pol, D. J., Wissinger, B., van Driel, M. A., Hoefsloot, L. H., de Wijs, I. J., van den Born, L. I., Heckenlively, J. R., Brunner, H. G. and Zrenner, E. 2003. Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum. Genet. 113, 268-275. https://doi.org/10.1007/s00439-003-0970-0
  42. Wolff, E. M., Byun, H. M., Han, H. F., Sharma, S., Nichols, P. W., Siegmund, K. D., Yang, A. S., Jones, P. A. and Liang, G. 2010. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 6, e1000917. https://doi.org/10.1371/journal.pgen.1000917
  43. Wong, J. J. L., Hawkins, N. J. and Ward, R. L. 2007. Colorectal cancer: a model for epigenetic tumorigenesis. Gut 56, 140-148. https://doi.org/10.1136/gut.2005.088799
  44. World Health Organization. 2014. GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. Lyon, France: International Agency for Research on Cancer.
  45. Xing, J., Hedges, D. J., Han, K., Wang, H., Cordaux, R. and Batzer, M. A. 2004. Alu element mutation spectra: molecular clocks and the effect of DNA methylation. J. Mol. Biol. 344, 675-682. https://doi.org/10.1016/j.jmb.2004.09.058
  46. Yamaguchi, J., Nagayama, S., Chino, A., Sakata, A., Yamamoto, N., Sato, Y., Ashihara, Y., Kita, M., Nomura, S. and Ishikawa, Y. 2014. Identification of coding exon 3 duplication in the BMPR1A gene in a patient with juvenile polyposis syndrome. Jpn. J. Clin. Oncol. 44, 1004-1008. https://doi.org/10.1093/jjco/hyu111
  47. Zhuo, C., Li, Q., Wu, Y., Li, Y., Nie, J., Li, D., Peng, J., Lian, P., Li, B. and Cai, G. 2015. LINE-1 hypomethylation in normal colon mucosa is associated with poor survival in Chinese patients with sporadic colon cancer. Oncotarget 6, 23820. https://doi.org/10.18632/oncotarget.4450