References
- Anderson, P. and Kedersha, N. 2006. RNA granules. J. Cell Biol. 172, 803-808. https://doi.org/10.1083/jcb.200512082
- Anderson, P. and Kedersha, N. 2008. Stress granules: the tao of RNA triage. Trends Biochem. Sci. 33, 141-150. https://doi.org/10.1016/j.tibs.2007.12.003
- Anderson, P. and Kedersha, N. 2009. RNA granules: posttranscriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10, 430-436. https://doi.org/10.1038/nrm2694
- Angenstein, F., Evans, A. M., Settlage, R. E., Moran, S. T., Ling, S. C., Klintsova, A. Y., Shabanowitz, J., Hunt, D. F. and Greenough, W. T. 2002. A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNAs in neurons. J. Neurosci. 22, 8827-8837. https://doi.org/10.1523/JNEUROSCI.22-20-08827.2002
-
Bikkavilli, R. K. and Malbon, C. C. 2011. Arginine methylation of G3BP1 in response to Wnt3a regulates
${\beta}$ -catenin mRNA. J. Cell Sci. 124, 2310-2320. https://doi.org/10.1242/jcs.084046 - Brendza, R. P., Serbus, L. R., Duffy, J. B. and Saxton, W. M. 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122. https://doi.org/10.1126/science.289.5487.2120
- Buchan, J. R. and Parker, R. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932-941. https://doi.org/10.1016/j.molcel.2009.11.020
- Costa, M., Ochem, A., Staub, A. and Falaschi, A. 1999. Human DNA helicase VIII: a DNA and RNA helicase corresponding to the G3BP protein, an element of the ras transduction pathway. Nucleic Acids Res. 27, 817-821. https://doi.org/10.1093/nar/27.3.817
- Diefenbach, R. J., Mackay, J. P., Armati, P. J. and Cunningham, A. L. 1998. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663-16670. https://doi.org/10.1021/bi981163r
- Diefenbach, R. J., Miranda-Saksena, M., Diefenbach, E., Holland, D. J., Boadle, R. A., Armati, P. J. and Cunningham, A. L. 2002. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J. Virol. 76, 3282-3291. https://doi.org/10.1128/JVI.76.7.3282-3291.2002
- Furukawa, M. T., Sakamoto, H. and Inoue, K. 2015. Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells. Genes Cells 20, 257-266. https://doi.org/10.1111/gtc.12224
- Hirokawa, N., Niwa, S. and Tanaka, Y. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. https://doi.org/10.1016/j.neuron.2010.09.039
- Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696.
- Irvine, K., Stirling, R., Hume, D. and Kennedy, D. 2004. Rasputin, more promiscuous than ever: a review of G3BP. Int. J. Dev. Biol. 48, 1065-1077. https://doi.org/10.1387/ijdb.041893ki
- Jang, W. H. and Seog, D. H. 2013. Kinesin superfamily-associated protein 3 (KAP3) mediates the interaction between Kinesin-II motor subunits and HS-1-associated protein X-1 (HAX-1) through direct binding. J. Life Sci. 23, 978-983. https://doi.org/10.5352/JLS.2013.23.8.978
- Jang, W. H., Jeong, Y. J., Urm, S. H. and Seog, D. H. 2016. The scaffolding protein WAVE1 associates with kinesin 1 through the tetratricopeptide repeat (TPR) domain of the kinesin lght chain (KLC). J. Life Sci. 26, 963-969. https://doi.org/10.5352/JLS.2016.26.8.963
- Kanai, Y., Dohmae, N. and Hirokawa, N. 2004. Kinesin transports RNA: isolation and characterization of an RNAtransporting granule. Neuron 43, 513-525. https://doi.org/10.1016/j.neuron.2004.07.022
- Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384. https://doi.org/10.1523/JNEUROSCI.20-17-06374.2000
- Kedersha, N., Panas, M. D., Achorn, C. A., Lyons, S., Tisdale, S., Hickman, T., Thomas, M., Lieberman, J., McInerney, G. M., Ivanov, P. and Anderson, P. 2016. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212, 845-860. https://doi.org/10.1083/jcb.201508028
- Kennedy, D., French, J., Guitard, E., Ru, K., Tocque, B. and Mattick, J. 2001. Characterization of G3BPs: tissue specific expression, chromosomal localisation and rasGAP (120) binding studies. J. Cell Biochem. 84, 173-187.
- Macara, I. G. 2001. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570-594. https://doi.org/10.1128/MMBR.65.4.570-594.2001
- Martin, S., Zekri, L., Metz, A., Maurice, T., Chebli, K., Vignes, M. and Tazi, J. 2013. Deficiency of G3BP1, the stress granules assembly factor, results in abnormal synaptic plasticity and calcium homeostasis in neurons. J. Neurochem. 125, 175-184. https://doi.org/10.1111/jnc.12189
- Matsuki, H., Takahashi, M., Higuchi, M., Makokha, G. N., Oie, M. and Fujii, M. 2013. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells 18, 135-146. https://doi.org/10.1111/gtc.12023
- Muresan, Z. and Muresan, V. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625. https://doi.org/10.1083/jcb.200502043
- Nakajima, K., Yin, X., Takei, Y., Seog, D. H., Homma, N. and Hirokawa, N. 2012. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76, 945-961. https://doi.org/10.1016/j.neuron.2012.10.012
- Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I. K., Graham, F. L., Gaskell, P. C., Dearlove, A., Pericak-Vance, M. A., Rubinsztein, D. C. and Marchuk, D. A. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194. https://doi.org/10.1086/344210
- Seog, D. H., Lee, D. H. and Lee, S. K. 2004. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J. Kor. Med. Sci. 19, 1-7. https://doi.org/10.3346/jkms.2004.19.1.1
- Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M. and Hirokawa, N. 2002. Glutamate-receptor-interactingprotein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. https://doi.org/10.1038/nature743
- Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A. and Hirokawa, N. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158. https://doi.org/10.1016/S0092-8674(00)81459-2
- Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J.M., Bertrand, E. and Tazi, J. 2003. The RasGAP associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823-831. https://doi.org/10.1083/jcb.200212128
- Xia, C. H., Roberts, E. A., Her, L. S., Liu, X., Williams, D. S., Cleveland, D. W. and Goldstein, L. S. 2003. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55-66. https://doi.org/10.1083/jcb.200301026