DOI QR코드

DOI QR Code

유통 중인 유기재배과채류와 관행재배과채류의 무기성분 및 기능성 성분 비교분석

Comparative Analysis of Functional Components of Organic and Conventional Cultivated Fruit Vegetables Commercially Distributed in Korea

  • 이민우 (부산대학교 생명환경화학과) ;
  • 박재은 (부산대학교 생명환경화학과) ;
  • 장은진 (부산대학교 생명환경화학과) ;
  • 손홍주 (부산대학교 생명환경화학과) ;
  • 박현철 (부산대학교 생명환경화학과) ;
  • 홍창오 (부산대학교 생명환경화학과) ;
  • 이상범 (국립농촌진흥청 농업과학원 유기농업과) ;
  • 심창기 (국립농촌진흥청 농업과학원 유기농업과) ;
  • 고병구 (국립농촌진흥청 농업과학원 유기농업과) ;
  • 김근기 (부산대학교 생명환경화학과)
  • Lee, Min-Woo (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Park, Jae-Eun (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Jang, Eun-Jin (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Son, Hong-Ju (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Park, Hyeon-cheol (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Hong, Chang-Oh (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Lee, Sang-Beom (Organic Agriculture Division, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Shim, Chang-Ki (Organic Agriculture Division, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Ko, Beung-Goo (Organic Agriculture Division, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Keun-Ki (Department of Life Science & Environmental Biochemistry, Pusan National University)
  • 투고 : 2017.08.28
  • 심사 : 2017.10.17
  • 발행 : 2017.10.30

초록

소비자 구매 단계의 유기재배 청양고추, 토마토, 딸기의 기능성 성분과 무기 성분을 관행재배 농산물과 비교하였다. Total phenol 함량은 유기재배 청양고추와 토마토가 관행재배 보다 각각 14%, 30% 높은 함량을 나타냈고, 딸기는 관행재배에서 13% 높게 나타났다. Total flavonoid 함량 또한 청양고추와 토마토가 관행재배보다 각각 11%와 29% 높게 나타났고, 딸기는 관행재배에서 2배 높게 나타났다. Vitamin C는 유기재배에서 높게 나타났으나 유의적이지는 않았다. ${\beta}-carotene$은 유기재배 토마토가 22% 높은 함량을 나타냈고, 고추와 딸기는 관행에서 각각 15%와 29% 높게 나타났다. 청양고추의 capsaicin과 토마토의 lycopene 함량은 재배환경에 따른 차이가 나지 않았으며, 딸기의 anthocyanin은 관행재배에서 높게 나타났다. 무기성분 분석결과 청양고추의 Total N, P, K는 재배환경에 큰 차이가 나타나지 않았고, 토마토는 관행재배에서 22~28% 높게 나타났다. 딸기의 K, Ca, Mg, P 함량은 관행재배에서 16~29% 높게 나타났다. 소비자 구매 단계의 유기재배 과채류와 관행재배 과채류의 일반성분과 무기성분 및 기능성성분 함량을 비교 분석한 결과, 성분에 따라서는 함량이 높게 나타났으나 개체간 변화가 크게 나타났다. 재배법에 따른 기능성 성분 등의 함량 비교는 생산지와 품종을 나누어 수년간 조사하여 빅데이터를 구축할 필요가 있을 것이다.

The contents of inorganic and functional components in the organic Cheongyang pepper, tomato, and strawberry were compared with those of the conventional produce. The analyzed functional components were total phenol, total flavonoid, vitamin C, vitamin E, ${\beta}-carotene$, and capsaicin in Cheongyang peppers; lycopene in tomatoes; and anthocyanin in strawberries. The analyzed inorganic components were total N, Zn, Fe, Ca, Mg, Na, K, and P. The total phenol contents of Cheongyang peppers and tomatoes were 14% and 30% higher, respectively, in the organic vegetables than the conventional ones, whereas strawberries had 13% higher components than the conventional ones. The total flavonoid contents of the Cheongyang peppers and tomatoes were 11% and 29% higher, respectively, than in the conventional produce, but those of the strawberries were 100% higher than in conventional strawberries. Vitamins were mostly higher in organic cultivation products, but there was no significant difference. The ${\beta}-carotene$ content was 22% higher in organic tomatoes, but conventional strawberries and peppers had more ${\beta}-carotene$ than the organic types did. The contents of capsaicin and lycopene were no different between the various cultivations, while anthocyanin was higher in the conventional cultivation. Analysis of inorganic components did not differ between cultivation methods for peppers and tomatoes, and the total N, K, and P contents were higher by 20-28% in the conventional cultivation. The contents of K, Ca, Mg, and P were 16-29% higher in the conventional cultivation of strawberries. Depending on the crops, there were many syntheses of functional components in the organic cultivation. This was thought to be due to nutrients and environmental stress.

키워드

참고문헌

  1. Alda, L. M., Gogoasa, I., Bordean, D., Gergen, I., Alda, S., Moldovan, C. and Nita, L. 2009. Lycopene content of tomatoes and tomato products. J. Agroaliment. Proc. Technol. 15, 540-542.
  2. Asami, D. K., Hong, Y. J., Barrett, D. M. and Mitchell, A. E. 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 51, 1237-1241. https://doi.org/10.1021/jf020635c
  3. Bunea, C., Pop, N., Babes, A. C., Matea, C., Dulf, F. V. and Bunea, A. 2012. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem. Cent. J. 6, 1-9.
  4. Carbonaro, M., Mattera, M., Nicoli, S., Bergamo, P. and Cappelloni, M. 2002. Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J. Agric. Food Chem. 50, 5458-5462. https://doi.org/10.1021/jf0202584
  5. Chassy, A. W., Bui, L., Renaud, E. N., Van Horn, M. and Mitchell, A. E. 2006. Three-year comparison of the content of antioxidant microconstituents and several quality characteristics in organic and conventionally managed tomatoes and bell peppers. J. Agric. Food Chem. 54, 8244-8252. https://doi.org/10.1021/jf060950p
  6. Cho, Y. S., Cho, M. C. and Suh, H. D. 2000. Current status and projects of national hot pepper industry in Korea. J. Kor. Capsicum Res. Coop. 6, 1-27.
  7. Choi, H. G., Kang, N. J., Moon, B. Y., Kwon, J. K., Rho, I. R., Park, K. S. and Lee, S. Y. 2013. Changes in fruit quality and antioxidant activity depending on ripening levels, storage temperature, and storage periods in strawberry cultivars. Kor. J. Hortic. Sci. Tech. 31, 194-202.
  8. Choi, S. H., Suh, B. S., Kozukue, E., Kozukue, N., Levin, C. E. and Friedman, M. 2006. Analysis of the contents of pungent compounds in fresh Korean red peppers and in pepper-containing food. J. Agric. Food Chem. 54, 9024-9031. https://doi.org/10.1021/jf061157z
  9. Chung, B. S. and Kang, K. O. 1985. The Changes of capsaicin contents in fresh and processed red peppers. J. Kor. Soc. Food Sci. Nutr. 14, 409-418.
  10. Edirisinghe, I., Banaszewski, K., Cappozzo, J., Sandhya, K., Ellis, C. L., Tadapaneni, R., Kappagoda C. T. and Burton- Freeman, B. M. 2011. Strawberry anthocyanin and its association with postprandial inflammation and insulin. British J. Nutr. 106, 913-922. https://doi.org/10.1017/S0007114511001176
  11. Folin, O. and Denis, W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12, 239-243.
  12. Giovannucci, E. 1999. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst. 91, 317-331. https://doi.org/10.1093/jnci/91.4.317
  13. Hwang, I. G., Kim, H. Y., Hwang, Y., Jeong, H. S. and Yoo, S. M. 2011. Quality characteristics of wet noodles combined with cheongyang hot pepper (Capsicum annuum L.) juice. J. Kor. Soc. Food Sci. Nutr. 40, 860-866. https://doi.org/10.3746/jkfn.2011.40.6.860
  14. Hwang, I. G., Kim, H. Y., Lee, J. S., Kim, H. R., Cho, M. C., Ko, I. B. and Yoo, S. M. 2011. Quality characteristics of Cheongyang pepper (Capsicum annuum L.) according to cultivation region. J. Kor. Soc. Food Sci. Nutr. 40, 1340-1346. https://doi.org/10.3746/jkfn.2011.40.9.1340
  15. Ismail, A. and Fun, C. S. 2003. Determination of vitamin C, ${\beta}$-carotene and riboflavin contents in five green vegetables organically and conventionally grown. Malays. J. Nutr. 9, 31-39.
  16. Jung, M. R., Hwang, Y., Kim, H. Y., Jeong, H. S., Park, J. S., Park, D. B. and Lee, J. S. 2010. Analyses of capsaicinoids and ascorbic acid in pepper (Capsicum annum L.) breeding lines. J. Kor. Soc. Food Sci. Nutr. 39, 1705-1709. https://doi.org/10.3746/jkfn.2010.39.11.1705
  17. Jung, S. H., Kang, J. H., Park, S. J., Sung, K. H. and Song, K. B. 2014. Quality changes in 'Elliot' blueberries and 'Sulhyang' strawberries packed with two different packaging materials during refrigerated storage. J. Kor. Soc. Food Sci. Nutr. 43, 901-908. https://doi.org/10.3746/jkfn.2014.43.6.901
  18. Kempaiah, R. K., Manjunatha, H. and Srinivasan, K. 2005. Protective effect of dietary capsaicin on induced oxidation of low-density lipoprotein in rat. Mol. Cell. Biochem. 275, 7-13. https://doi.org/10.1007/s11010-005-7643-3
  19. Kim, J. H., Gu, J. R., Kim, G. H., Choi, S. R. and Yang, J. Y. 2010. Effect of storage temperature on the quality of tomato. Kor. J. Food Nutr. 23, 428-433.
  20. Kim, J. S., Shim, I. S., Kim, I. S. and Kim, M. J. 2010. Changes of cysteine, glutathione and ascorbic acid content in chinese cabbage, head lettuce and spinach by the growth stage. Kor. J. Hort. Sci. Technol. 28, 186-191.
  21. Kim, K., Kim, Y. S., Hong, M. and Yook, H. 2016. Quality characteristics of bagel added with tomato powder. J. Kor. Soc. Food Sci. Nutr. 45, 360-365. https://doi.org/10.3746/jkfn.2016.45.3.360
  22. Laviada, I. 2006. Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin. Apoptosis 11, 89-99. https://doi.org/10.1007/s10495-005-3275-z
  23. Lee, M. W., Choi, E. B., Park, J. E., Kim, S. C., Lee, S. B., Sim, C. K., Lee, Y. B., Hong, C. O. and Kim, K. K. 2016. Analysis of functional components of the perilla leaves (Perilla frutescens var. japonica Hara) grown in organic and conventional conditions. Kor. J. Soil Sci. Fert. 49, 517-523. https://doi.org/10.7745/KJSSF.2016.49.5.517
  24. Lee, S. J., Shin, S. R. and Yoon, K. Y. 2013. Physicochemical properties of black doraji (Platycodon grandiflorum). J. Kor. Soc. Food Sci. Nutr. 45. 422-427.
  25. Lin, J. Y. and Tang, C. Y. 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 101, 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014
  26. Lombardi-Boccia, G., Lucarini, M., Lanzi, S., Aguzzi, A. and Cappelloni, M. 2004. Nutrients and antioxidant molecules in yellow plums (Prunus domestica L.) from conventional and organic productions: a comparative study. J. Agric. Food Chem. 52, 90-94. https://doi.org/10.1021/jf0344690
  27. Park, Y. H., Park, S. J., Han, G. J., Choe, J. S., Lee, J. Y. and Kang, M. S. 2012. Quality characteristics of pre-processed galic during storage according to storage temperature. J. Kor. Soc. Food Sci. Nutr. 47, 994-1001.
  28. Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O'Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G. and Mainland, C. M. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 46, 2686-2693. https://doi.org/10.1021/jf980145d
  29. Soltoft, M., Bysted, A., Madsen, K. H., Mark, A. B., Bugel, S. G., Nielsen, J. and Knuthsen, P. 2011. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans. J. Sci. Food Agric. 91, 767-775. https://doi.org/10.1002/jsfa.4248
  30. Soltoft, M., Nielsen, J., Holst Laursen, K., Husted, S., Halekoh, U. and Knuthsen, P. 2010. Effects of organic and conventional growth systems on the content of flavonoids in onions and phenolic acids in carrots and potatoes. J. Agric. Food Chem. 58, 10323-10329. https://doi.org/10.1021/jf101091c
  31. Sun, S. H., Kim, S. J., Kim, G. C., Kim, H. R. and Yoon, K. S. 2011. Changes in quality characteristics of fresh-cut produce during refrigerated storage. Kor. J. Food Sci. Technol. 43, 495-503. https://doi.org/10.9721/KJFST.2011.43.4.495
  32. Treutter, D. 2001. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul. 34, 71-89. https://doi.org/10.1023/A:1013378702940
  33. Vinha, A. F., Barreira, S. V., Costa, A. S., Alves, R. C. and Oliveira, M. B. P. 2014. Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol. 67, 139-144. https://doi.org/10.1016/j.fct.2014.02.018
  34. Warman, P. R. and Havard, K. A. 1997. Yield, vitamin and mineral contents of organically and conventionally grown carrots and cabbage. Agric. Ecosyst. Environ. 61, 155-162. https://doi.org/10.1016/S0167-8809(96)01110-3
  35. Warman, P. R. and Havard, K. A. 1998. Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. Agric. Ecosyst. Environ. 68, 207-216. https://doi.org/10.1016/S0167-8809(97)00102-3
  36. Westerterp-Plantenga, M. S., Smeets, A. and Lejeune, M. P. 2005. Sensor and gastrointestinal satiety effects of capsaicin on food intake. Int. J. Obes. 29, 682-688. https://doi.org/10.1038/sj.ijo.0802862
  37. Wrolstad, R. E. 1993. Color and pigment analyses in fruit products. pp. 1-20, Agricultural Experiment Station. Oregon State University.
  38. Wunderlich, S. M., Feldman, C., Kane, S. and Hazhin, T. 2008. Nutritional quality of organic, conventional, and seasonally grown broccoli using vitamin C as a marker. Int. J. Food Sci. Nutr. 59, 34-45. https://doi.org/10.1080/09637480701453637
  39. Yoon, J. M., Ji, J. J., Lim, S. C., Lee, K. H., Kim, H. T., Jeong, H. S. and Lee, J. S. 2010. Changes in selected components and antioxidant and antiproliferative activity of peppers depending on cultivation. J. Kor. Soc. Food Sci. Nutr. 39, 731-736. https://doi.org/10.3746/jkfn.2010.39.5.731
  40. Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J. A. and Bagchi, D. 2007. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51, 675-683. https://doi.org/10.1002/mnfr.200700002