DOI QR코드

DOI QR Code

자외선에 의해 유도된 Chlorella vulgaris 돌연변이 균주의 대량 생산 시스템에서의 평가

The Evaluation of UV-induced Mutation of the Microalgae, Chlorella vulgaris in Mass Production Systems

  • Choi, Tae-O (Department of Microbiology, Pukyong National University) ;
  • Kim, Kyong-Ho (Department of Microbiology, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, Pukyong National University) ;
  • Choi, Tae-Jin (Department of Microbiology, Pukyong National University) ;
  • Jeon, Young Jae (Department of Microbiology, Pukyong National University)
  • 투고 : 2017.07.11
  • 심사 : 2017.09.29
  • 발행 : 2017.10.30

초록

미세조류 Chlorella vulgaris는 바이오 디젤 생산을 위한 중요한 대체원료 중 하나로 간주되어 왔으나, 이러한 미생물의 산업적 적용은 낮은 바이오 매스와 지질 생산성에 의해 제약을 받아왔다. 따라서 이러한 문제를 극복하기 위해 본 연구는 자외선을 이용한 무작위 돌연변이 유발 기술을 통해 높은 지질 및 바이오 매스 생산성을 가지는 C. vulgaris 균주를 분리하고 그 특성을 규명하였으며, 두 가지 유형의 대량 생산 시스템을 이용하여 바이오 매스 및 지질 함량의 산출량을 비교하였다. 분리된 돌연변이 균주 중, 특히 실험실 조건에서 UBM1-10으로 명명된 돌연변이 균주는 야생형 균주에 비해 약 1.5배 높은 세포 수율 및 지질 함량을 보였다. 이러한 결과를 바탕으로 UBM1-10을 선택하여 TBPR (tubular photobioreactor)과 OPR (open pond type reactor)의 두 가지 유형의 반응기를 사용하여 실외 배양 조건에서 배양하였다. 그 결과 TBPR에서 재배된 돌연변이 균주의 세포 수율은($2.6g\;l^{-1}$) OPR에서 배양된 균주의 세포 수율($0.5g\;l^{-1}$)과 비교하였을 때 약 5배 이상의 높은 세포 수율을 나타내었으며, 대량 배양 후, UBM1-10 및 모 균주의 조 지방 함량 및 조성 등에 대해 추가로 조사를 실시하였다. 그 결과 C. vulagris UBM1-10균주의 지질함량(0.3% w/w)이 모 균주의 지질함량(0.1%)에 비해 약 3배 이상의 조 지방 함량을 보유함을 확인하였다. 따라서 이 연구는 바이오 디젤 생산 자원으로서 C. vulgaris의 경제적 잠재성이 photoreactor type의 선택 및 전략적 돌연변이 분리 기술을 통해 증가 될 수 있음을 보여 주었다.

The microalgae Chlorella vulgaris has been considered an important alternative resource for biodiesel production. However, its industrial-scale production has been constrained by the low productivity of the biomass and lipid. To overcome this problem, we isolated and characterized a potentially economical oleaginous strain of C. vulgaris via the random mutagenesis technique using UV irradiation. Two types of mass production systems were compared for their yield of biomass and lipid content. Among the several putatively oleaginous strains that were isolated, the particular mutant strain designated as UBM1-10 in the laboratory showed an approximately 1.5-fold higher cell yield and lipid content than those from the wild type. Based on these results, UBM1-10 was selected and cultivated under outdoor conditions using two different types of reactors, a tubular-type photobioreactor (TBPR) and an open pond-type reactor (OPR). The results indicated that the mutant strain cultivated in the TBPR showed more than 5 times higher cell concentrations ($2.6g\;l^{-1}$) as compared to that from the strain cultured in the OPR ($0.5g\;l^{-1}$). After the mass cultivation, the cells of UBM1-10 and the parental strain were further investigated for crude lipid content and composition. The results indicate a 3-fold higher crude lipid content from UBM1-10 (0.3%, w/w) as compared to that from the parent strain (0.1% w/w). Therefore, this study demonstrated that the economic potential of C. vulgaris as a biodiesel production resource can be increased with the use of a photoreactor type as well as the strategic mutant isolation technique.

키워드

참고문헌

  1. Ahmad, A., Yasin, N. M., Derek, C. and Lim, J. 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sustainable Energy Rev. 15, 584-593. https://doi.org/10.1016/j.rser.2010.09.018
  2. Amin, S. 2009. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage. 50, 1834-1840. https://doi.org/10.1016/j.enconman.2009.03.001
  3. Anthony, J., Rangamaran, V. R., Gopal, D., Shivasankarasubbiah, K. T., Thilagam, M. L., Peter Dhassiah, M., Padinjattayil, D. S., Valsalan, V. N., Manambrakat, V., Dakshinamurthy, S., Thirunavukkarasu, S. and Ramalingam, K. 2015. Ultraviolet and 5'fluorodeoxyuridine induced random mutagenesis in Chlorella vulgaris and its impact on fatty acid profile: A new insight on lipid-metabolizing genes and structural characterization of related proteins. Mar. Biotechnol. 17, 66-80. https://doi.org/10.1007/s10126-014-9597-5
  4. Banerjee, C., Dubey, K. K. and Shukla, P. 2016. Metabolic engineering of microalgal based biofuel production: Prospects and challenges. Front. Microbiol. 7, 432.
  5. Brennan, L. and Owende, P. 2010. Biofuels from microalgae -a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustainable Energy Rev. 14, 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  6. Carvalho, A. P., Meireles, L. A. and Malcata, F. X. 2006. Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Prog. 22, 1490-1506. https://doi.org/10.1002/bp060065r
  7. Chen, W., Sommerfeld, M. and Hu, Q. 2011. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 102, 135-141. https://doi.org/10.1016/j.biortech.2010.06.076
  8. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  9. Choi, T. O. 2015. High-density culturing apparatus of microalgae of air exchange type. K. Chloland Co. Ltd (ed.), Republic of Korea (Patent No: 10-2015-0018351).
  10. Dianursanti Rizkytata, B. T., Gumelar, M. T. and Abdullah, T. H. 2014. Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris. Energy Procedia 47, 56-61. https://doi.org/10.1016/j.egypro.2014.01.196
  11. El-Kassas, H. Y. 2013. Growth and fatty acid profile of the marine microalga Picochlorum sp. Grown under nutrient stress conditions. Egypt. J. Aquat. Res. 39, 233-239. https://doi.org/10.1016/j.ejar.2013.12.007
  12. Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N. and Tredici, M. R. 2014. Chlorella for protein and biofuels: From strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol. Biofuels 7, 84-84. https://doi.org/10.1186/1754-6834-7-84
  13. Hounslow, E., Kapoore, R. V., Vaidyanathan, S., Gilmour, D. J. and Wright, P. C. 2016. The search for a lipid trigger: The effect of salt stress on the lipid profile of the model microalgal species Chlamydomonas reinhardtii for biofuels production. Curr. Biotechnol. 5, 305-313. https://doi.org/10.2174/2211550105666160322234434
  14. Hu, W. 2014. Dry weight and cell density of individual algal and cyanobacterial cells for algae research and development, University of Missouri--Columbia.
  15. Huntley, M. E., Johnson, Z. I., Brown, S. L., Sills, D. L., Gerber, L., Archibald, I., Machesky, S. C., Granados, J., Beal, C. and Greene, C. H. 2015. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res. 10, 249-265. https://doi.org/10.1016/j.algal.2015.04.016
  16. Katsuda, T., Shimahara, K., Shiraishi, H., Yamagami, K., Ranjbar, R. and Katoh, S. 2006. Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J. Biosci. Bioeng. 102, 442-446. https://doi.org/10.1263/jbb.102.442
  17. Kim, J., Jung, J. M., Lee, J., Kim, K. H., Choi, T. O., Kim, J. K., Jeon, Y. J. and Kwon, E. E. 2016. Pyrogenic transformation of Nannochloropsis oceanica into fatty acid methyl esters without oil extraction for estimating total lipid content. Bioresour. Technol. 212, 55-61. https://doi.org/10.1016/j.biortech.2016.04.024
  18. Lau, K. Y., Pleissner, D. and Lin, C. S. K. 2014. Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresour. Technol. 170, 144-151. https://doi.org/10.1016/j.biortech.2014.07.096
  19. Mata, T. M., Martins, A. A. and Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustainable Energy Rev. 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  20. Rios, L., Klein, B., Luz, L., Maciel Filho, R. and Maciel, M. W. 2015. Nitrogen starvation for lipid accumulation in the microalga species desmodesmus sp. Appl. Biochem. Biotechnol. 175, 469-476. https://doi.org/10.1007/s12010-014-1283-6
  21. Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M. R. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnol. Bioeng. 102, 100-112. https://doi.org/10.1002/bit.22033
  22. Sharma, K. K., Schuhmann, H. and Schenk, P. M. 2012. High lipid induction in microalgae for biodiesel production. Energies 5, 1532-1553. https://doi.org/10.3390/en5051532
  23. Slade, R. and Bauen, A. 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53, 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019
  24. Trentacoste, E. M., Shrestha, R. P., Smith, S. R., Gle, C., Hartmann, A. C., Hildebrand, M. and Gerwick, W. H. 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. USA. 110, 19748-19753. https://doi.org/10.1073/pnas.1309299110
  25. Watanabe, A. 1960. List of algal strains in collection at the institute of applied microbiology, university of tokyo. J. Gen. Appl. Microbiol. 6, 283-292. https://doi.org/10.2323/jgam.6.283
  26. Zayadan, B. K., Purton, S., Sadvakasova, A. K., Userbaeva, A. A. and Bolatkhan, K. 2014. Isolation, mutagenesis, and optimization of cultivation conditions of microalgal strains for biodiesel production. Russ. J. Plant Physiol. 61, 124-130. https://doi.org/10.1134/S102144371401018X
  27. Zhu, L. D., Li, Z. H. and Hiltunen, E. 2016. Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed. Res. Int. 2016, 8792548.