DOI QR코드

DOI QR Code

국수에 대한 4종 해조류 에탄올 추출물에 의한 ABTS+, OH 라디칼, NO 라디칼, 철 이온 환원력

ABTS+ Radical, Hydroxy Radical (OH), Nitric Oxide (NO), and Ferric Ion Reducing Antioxidant Power (FRAP) Effects of Ethanol Extracts from Four Seaweed Species for Noodles

  • 조경순 (동명대학교 식품영양학과)
  • Cho, Kyung-Soon (Department of Food Science & Nutrition, Tongmyong University)
  • 투고 : 2017.07.21
  • 심사 : 2017.10.09
  • 발행 : 2017.10.30

초록

4종의 식용 조류, 참김(Porphyra tenera), 미역(Undaria pinnatifida), 톳(Sargassum fusiforme), 잎파래(Enteromorpha linza)의 에탄올 추출물에 대해 ABTS+ 소거활성, 하이드록시 라디칼(OH), 산화질소(NO), 철 이온 환원력(FRAP)을 조사하였다. ABTS+ 소거활성은 Brand-Williams 등의 방법에 따랐다. 톳의 ABTS+ 소거활성은 8.0 mg/ml 일 때 61.8%로 가장 높은 반면 잎파래는 동일 농도에서 35.7%로 가장 낮았다. 참 김과 미역은 ABTS+에 대해 유사한 활성 저해를 나타내었다. 하이드록시 라디칼의 저해활성은 톳 > 참김 > 미역 > 잎파래 순이었다. 산화질소는 8.0 mg/ml 추출물일 때 톳 > 참김 > 미역 > 잎파래 순이었다. 3.5% 소금과 4종의 조류 추출물을 첨가한 밀가루 반죽을 국수틀에 뽑아낸 후 5분간 끓였을 때 전반적으로 4개의 산화제에 대해 활성저해가 저하되었다. 톳 8.0 mg/ml를 첨가한 국수의 경우 산화질소 활성저해는 27.2%였다. 미역 8.0 mg/ml을 첨가한 국수는 철 이온 환원력이 31.5%였다. 종합적으로 톳 추출물이 ABTS+, OH, NO, FRAP에 대해 활성저해가 가장 높았다. 본 연구 결과 자연적으로 분포하는 참김, 미역, 톳, 파래가 국수의 항산화력 증진에 도움을 준다고 사료되었다.

The authors evaluated the scavenging activities of ABTS+ radical, hydroxy radical (OH), nitric oxide (NO), and ferric ion reducing antioxidant power (FRAP) from ethanol extracts of four edible alga, Enteromorpha linza, Porphyra tenera, Sargassum fusiforme, and Undaria pinnatifida. ABTS+ scavenging activity was analyzed according to the method of Brand-Williams et al. ABTS+ scavenging activity of S. fusiforme was evaluated to 61.8% at 8.0 mg/ml. ABTS+ scavenging activity of P. tenera was evaluated to 35.7% at 8.0 mg/ml. P. tenera and U. pinnatifida showed similar inhibitions of ABTS+ scavenging activity. According to the results of the OH assay in seaweed, inhibitory activities were in the order of S. fusiforme > P. tenera > U. pinnatifida > E. linza. The results showed scavenging activity for NO in the following order of potency: S. fusiforme > P. tenera > U. pinnatifida > E. linza with concentration values of 8.0 mg/ml. The NO scavenging activities of dough, which was instant noodles mixed with S. fusiforme and 3.5% salt, were 27.2% at 8.0 mg/ml. After boiling for 5 minutes, FRAP scavenging activity of instant noodles mixed with extracts of U. pinnatifida was evaluated to 31.5% at 8.0 mg/ml. S. fusiforme showed the highest inhibition activity of ABTS+, OH, NO, and FRAP among the four algae. Thus, these findings provide evidence that P. tenera, U. Pinnatifida, S. fusiforme, and E. linza extracts could become sources of natural antioxidants.

키워드

참고문헌

  1. Alghazeer, R., Whida, F., Majdoop, H. and AlMazoghi, E. 2009. Assessment of antioxidant activity and phenolic content of marine algae from the north coast of Tripoli (Libya). Ain. Shams. Sci. Bull. 46, 77-85.
  2. Baliga, R., Zhang, Z., Baliga, M., Ueda, N. and Shah, S. V. 1998. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int. 53, 394-401 https://doi.org/10.1046/j.1523-1755.1998.00767.x
  3. Boora, F., Chirisa, F. and Mukanganyama, S. 2014. Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. J. Food Proc. http://dx.doi.org/10.1155/2014/918018
  4. Brand-Williams, W., Cuvelier, M. E. and Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Food Sci. Technol. 28, 25-30.
  5. Cai, Y., Sun, M. and Corke, H. 2003. Antioxidant activity of betalains from plants of the Amaranthaceae. J. Agri. Food Chem. 51, 2288-2294. https://doi.org/10.1021/jf030045u
  6. Cho, K. S. 2016. Inhibitory effect of DPPH, hydroxyl radicals (OH) activity, and lipoxygenase inhibition of Hydrocotyle sibthorpioides Lamarck. J. Life Sci. 26, 1022-1026. https://doi.org/10.5352/JLS.2016.26.9.1022
  7. Cornish, M. L. and Garbary, D. J. 2010. Antioxidants from macroalgae: Potential applications in human health and nutrition. Algae 25, 155-171. https://doi.org/10.4490/algae.2010.25.4.155
  8. Ghiselli, A., Serafini, M., Natella, F. and Scaccini, C. 2000. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic. Biol. Med. 29, 1106-1114. https://doi.org/10.1016/S0891-5849(00)00394-4
  9. Halliwell, B. and Gutteridge, J. M. C. 1992. Biologically relevant metal ion-dependent hydroxyl radical generation. FEBS Lett. 307, 108-112. https://doi.org/10.1016/0014-5793(92)80911-Y
  10. Heo, S. J., Cha, S. H., Lee, K. W. and Jeon, Y. J. 2006. Antioxidant activities of red algae from Jeju Island. Algae 21, 149-156. https://doi.org/10.4490/ALGAE.2006.21.1.149
  11. Heu, M. S., Yoon, M. S., Kim, H. J., Park, K. H., Lee, J. H., Jo, M. R., Lee, J. S., Jeon, Y. J. and Kim, J. S. 2010. Improvement on the antioxidant activity of instant noodles containing enzymatic extracts from Ecklonia cava and its quality characterization. Kor. J. Fish Aquat. Sci. 43, 391-399.
  12. Kato, H., Lee, I. E., Chuyen, N. V., Kim, S. B. and Hayase, F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric. Biol. Chem. 51, 1333-1338.
  13. Kim, K. N., Heo, S. J., Cha, S. H. and Jeon, Y. J. 2006. Evaluation of DPPH Radical scavenging activity of Jeju seaweeds using high throughput screening (HTS) technique. J. Mar. Biosci. Biotechnol. 1, 170-177.
  14. Lee, N. Y. 2013. Antioxidant effect and tyrosinase inhibition activity of seaweeds ethanol extracts. J. Kor. Soc. Food Sci. Nutr. 42, 1893-1898. https://doi.org/10.3746/jkfn.2013.42.12.1893
  15. Lee, S. K., Zakaria, H. M., Cheng, H. S., Luyengi, L., Gamez, E. J. C., Mehta, R., Kinghorn, A. D. and Pezzuto, J. M. 1998. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen. 1, 35-46.
  16. Moon, S. H., Jo, J. H., Kye, I. S. and Huh, M. K. 2017. DPPH radical scavenging activity effect of edible seaweeds for noodles. EJPMR. 4, 32-37
  17. Naik, S. R. 2003. Antioxidants and their role in biological functions: an overview. Indian Drugs 40, 501-508.
  18. Oyaizu, M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nut. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  19. Prakash, D., Singh, B. N. and Upadhyay, G. 2007. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem. 102, 1389-1393. https://doi.org/10.1016/j.foodchem.2006.06.063
  20. Shebis, Y., David Iluz, D., Kinel-Tahan1, Y., Dubinsky, Z., and Yehoshua, Y. 2013. Natural antioxidants: function and sources. Food Nutr. Sci. 4, 643-649. https://doi.org/10.4236/fns.2013.46083
  21. Stintzing, F. C. and Carle, R. 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 15, 19-38. https://doi.org/10.1016/j.tifs.2003.07.004
  22. Tsai, P. J., Tsai, T. H., Yu, C. H. and Ho, S. C. 2007. Evaluation of NO-suppressing activity of several Mediterranean culinary spices. Food Chem. Toxicol. 45, 440-447. https://doi.org/10.1016/j.fct.2006.09.006
  23. Yan, X., Chuda, Y., Suzuki, M., Nagata, T. and Yan, X. J. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem. 63, 605-607. https://doi.org/10.1271/bbb.63.605
  24. Zabidi, M. A., Karim, N. A. and Sazali, N. S. 2015. Effect on nutritional and antioxidant properties of yellow noodles substituted with different levels of mangosteen (Garcinia mangostana) pericarp powder. Inter. J. Biol. Biomol. Agri. Food Biotechnol. Eng. 9, 530-534.
  25. Zubia, M., Fabre, M. S., Kerjean, V. and Deslandes, E. 2009. Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Botanica Marina 52, 268-77.