DOI QR코드

DOI QR Code

Histone H3K4 Methyltransferase SET1A Stimulates the Adipogenesis of 3T3-L1 Preadipocytes

히스톤 H3K4 메칠화효소 SET1A에 의한 지방세포 분화 촉진

  • Kim, Seon Hoo (Division of Longevity and Bifunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Jung, Myeong Ho (Division of Longevity and Bifunctional Medicine, School of Korean Medicine, Pusan National University)
  • 김선후 (부산대학교 한의학전문대학원 한의학과) ;
  • 정명호 (부산대학교 한의학전문대학원 한의학과)
  • Received : 2017.08.24
  • Accepted : 2017.10.20
  • Published : 2017.10.30

Abstract

SET1A is a histone H3K4 methyltransferase that catalyzes di- and trimethylation of histone H3 at lysine 4 (H3K4). Mono-, di-, and trimethylations on H3K4 (H3K4me1, H3K4me2, and H3K4me3, respectively) are generally correlated with gene activation. Although H3K4 methylation is associated with the stimulation of adipogenesis of 3T3-L1 preadipocytes, it remains unknown whether SET1A plays a role in the regulation of adipogenesis of 3T3-L1 preadipocytes. Here, we investigated whether SET1A regulates 3T3-L1 preadipocytes' adipogenesis and characterized the mechanism involved in this regulation. SET1A expression increased during 3T3-L1 preadipocytes' adipogenesis. Consistent with the increased SET1A expression, the global H3K4me3 level had also increased on day 2 after the induction of adipogenesis in 3T3-L1 adipocytes. SET1A knockdown using siRNA in 3T3-L1 preadipocytes inhibited 3T3-L1 preadipocytes' adipogenesis, as assessed by Oil Red O staining and the expression of adipogenic genes, indicating that SET1A stimulates the adipogenesis of 3T3-L1 preadipocytes. SET1A knockdown inhibited the cell proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE) via down-regulation of the cell cycle gene cyclin E1, as well as the DNA synthesis gene, dihydrofolate reductase. Furthermore, SET1A knockdown repressed peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) expression during the late stage of adipogenesis. These results indicate that SET1A stimulates MCE and $PPAR{\gamma}$ expression, which leads to the promotion of 3T3-L1 preadipocytes' adipogenesis.

히스톤 H3K4의 메칠화는 3T3-L1의 지방세포의 분화를 촉진하는 것으로 알려져 있으나, 히스톤 H3K4 메칠화 효소인 SET1A가 지방세포 분화를 조절하는지에 대해서는 보고된 바가 없다. 그러므로 본 연구에서는 SET1A의 3T3-L1 지방세포의 분화조절과 기전을 연구하였다. SET1A의 발현은 3T3-L1 지방세포 분화과정에서 증가함을 관찰하였다. 3T3-L1 지방전구세포에서 siRNA을 이용하여 SET1A의 발현을 감소시키면 3T3-L1 지방전구세포의 분화가 억제됨을 관찰하여 SET1A가 3T3-L1 지방전구세포의 분화를 촉진함을 알 수 있었다. 이에 대한 조절기전을 알기 위해, SET1A의 발현을 감소시킨 3T3-L1 지방전구세포의 세포증식을 측정한 결과, 분화 초기 단계인 분화 후 2일 동안 3T3-L1 지방세포의 증식이 감소하였다. 또한 분화 후 7일 동안 지방세포세포 분화 조절인자들의 발현을 측정한 결과, SET1A의 발현을 감소시킨 3T3-L1 지방세포에서 $PPAR{\gamma}$의 발현이 감소하였다. 위와 같은 연구결과를 바탕으로, SET1A는 분화초기단계에서는 mitotic clonal expansion 단계를 촉진하고, 분화후기단계에서는 $PPAR{\gamma}$의 발현을 증가시켜 3T3-L1 지방세포의 분화를 촉진함을 알 수 있었다.

Keywords

References

  1. Barski, A., Cuddapah, S., Cui, K. and Zhao, K. 2007. Highresolution profiling of histone methylations in the human genome. Cell 129, 823-837. https://doi.org/10.1016/j.cell.2007.05.009
  2. Cho, Y. W., Hong, S., Jin, Q., Wang, L., Lee, J. E. and Ge, K. 2009. Histone methylation regulator PTIP is required for PPARgamma and C/EBPalpha expression and adipogenesis. Cell Metab. 10, 27-39. https://doi.org/10.1016/j.cmet.2009.05.010
  3. Cho, Y. W., Hong, T., Guo, H., Dressler G. R., Copeland, T. D. and Ge, K. 2007. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J. Biol. Chem. 282, 20395-20406. https://doi.org/10.1074/jbc.M701574200
  4. Farmer, S. 2006. Transcriptional control of adipocyte formation. Cell Metab. 4, 263-273. https://doi.org/10.1016/j.cmet.2006.07.001
  5. Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour, P. and Ren, B. 2009. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108-112. https://doi.org/10.1038/nature07829
  6. Lee, J., Saha, P. K., Yang, Q. H., Lee, S., Park, J. Y., Suh, Y. and Lee, J. W. 2008. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc. Natl. Acad. Sci. USA 105, 19229-19234. https://doi.org/10.1073/pnas.0810100105
  7. Lefterova, M. I. and Lazar, M. A. 2009. New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107-114. https://doi.org/10.1016/j.tem.2008.11.005
  8. Mikkelsen, T. S., Xu, Z., Zhang, X., Wang, L. and Rosen, E. D. 2010. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156-169. https://doi.org/10.1016/j.cell.2010.09.006
  9. Mohan, M., Herz, H. M., Smith, E. R., Zhang, Y. and Shilatifard, A. 2011. The COMPASS family of H3K4 methylases in Drosophila. Mol. Cell. Biol. 31, 4310-4318 https://doi.org/10.1128/MCB.06092-11
  10. Morgan, D. O. 2008. SnapShot: cell-cycle regulators I. Cell 135, 764-764. https://doi.org/10.1016/j.cell.2008.10.039
  11. Takada, I., Mihara, M., Suzawa, M., Ohtake, F., Kobayashi, S. and Igarashi, M. 2007. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat. Cell Biol. 9, 1273-1285. https://doi.org/10.1038/ncb1647
  12. Wang, L., Xu, S., Lee, J., Baldridge, A., Grullon, S. and Ge, K. 2012. Histone H3K9 methyltransferase G9a represses $PPAR{\gamma}$ expression and adipogenesis. EMBO J. 32, 45-59. https://doi.org/10.1038/emboj.2012.306
  13. Zhang, Z. C., Liu, Y., Li, S. F., Guo, L., Zhao, Y. and Qian, S. W. 2014. Suv39h1 mediates AP-$2{\alpha}$-dependent inhibition of C/$EBP{\alpha}$ expression during adipogenesis. Mol. Cell Biol. 34, 2330-2338. https://doi.org/10.1128/MCB.00070-14