Radius of Starlikeness for Analytic Functions with Fixed Second Coefficient

Rosihan M. Ali
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
e-mail: rosihan@usm.my
Virendra Kumar
Department of Mathematics, Central University of Haryana, Mahendergarh-123029
Haryana, India
e-mail: vktmaths@yahoo.in
V. Ravichandran*
Department of Mathematics, University of Delhi, Delhi-110007, India
e-mail: vravi@maths.du.ac.in; vravi68@gmail.com
Shanmugam Sivaprasad Kumar
Department of Applied Mathematics, Delhi Technological University, Delhi-110042, India
e-mail: spkumar@dce.ac.in

Abstract. Sharp radius constants for certain classes of normalized analytic functions with fixed second coefficient, to be in the classes of starlike functions of positive order, parabolic starlike functions, and Sokó-Stankiewicz starlike functions are obtained. Our results extend several earlier works.

1. Introduction

Let \mathcal{A} denote the class of analytic functions f defined on $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, which are normalized by the conditions $f(0)=0$, and $f^{\prime}(0)=1$ and let \mathcal{S} denote its subclass consisting of univalent functions. The well-known Bieberbach theorem states that the second coefficient in the Maclaurin series of functions in \mathcal{S} is bounded by two. This estimate for the second coefficient plays an important role in the study

* Corresponding Author.

Received August 20, 2015; accepted February 26, 2016. 2010 Mathematics Subject Classification: 30C45, 30C80.
Key words and phrases: Starlike functions, Sokól-Stankiewicz starlike functions, parabolic starlike functions, convex functions, radius constants.
of the class \mathcal{S}, and for that reason, there has been considerable continued interest in the investigation of the class $\mathcal{S}_{b} \subset \mathcal{S}$ of functions $f(z)=z+a_{2} z^{2}+\cdots, a_{2}=2 b$ for a fixed b with $|b| \leq 1$. The investigation on \mathcal{S}_{b} was initiated as early as 1920 by Gronwall [7], where growth and distortion estimates were obtained for functions in \mathcal{S}_{b}. Recently, Ali et al. [5] extended the theory of second-order differential subordination to the class of analytic functions with fixed second coefficient. Pursuant to that work, Nagpal and Ravichandran [15] obtained sufficient conditions for starlikeness and close-to-convexity. Differential superordinations were considered by Mendiratta et al. [13, 14], while Lee et al. [9] investigated other applications of differential subordination for functions with fixed second coefficient. Livingston problems for close-to-convex functions with fixed second coefficient were studied by Mendiratta and Ravichandran [12]. A survey on functions with fixed initial coefficient can be found in [2]. For $0 \leq \alpha<1$, the classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike functions of order α and convex functions of order α consist of functions $f \in \mathcal{S}$ satisfying respectively $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\alpha$, and $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>\alpha$; the classes $\mathcal{S}^{*}:=\mathcal{S}^{*}(0)$ and $\mathcal{K}:=\mathcal{K}(0)$ are the familiar classes of starlike and convex functions respectively. The second coefficient of functions in these classes satisfies respectively the inequalities $\left|a_{2}\right| \leq 2(1-\alpha)$ and $\left|a_{2}\right| \leq 1-\alpha$. For notational convenience, let us denote by \mathcal{A}_{b}, the class of normalized analytic functions of the form $f(z)=z+b z^{2}+\cdots$. For $|b| \leq 1$ and $0 \leq \alpha<1$, let $\mathcal{S}_{b}^{*}(\alpha):=\mathcal{S}^{*}(\alpha) \bigcap \mathcal{A}_{2 b(1-\alpha)}$ and $\mathcal{K}_{b}(\alpha):=\mathcal{K}(\alpha) \bigcap \mathcal{A}_{b(1-\alpha)}$. Functions in these classes are respectively called starlike and convex functions of order α with fixed second coefficient. Let $\mathcal{S}_{b}^{*}:=\mathcal{S}_{b}^{*}(0)$ and $\mathcal{K}_{b}:=\mathcal{K}_{b}(0)$. The class \mathcal{S}_{L}^{*} of Sokól-Stankiewicz starlike functions [22] consists of functions $f \in \mathcal{A}$ for which $z f^{\prime}(z) / f(z)$ lies in the region bounded by the right halfplane of the lemniscate of Bernoulli: $\left|w^{2}-1\right|=1$. A function $f \in \mathcal{S}$ is uniformly convex if and only if $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>\left|z f^{\prime \prime}(z) / f^{\prime}(z)\right|$. The corresponding class of starlike functions connected with the Alexander relation is the class of parabolic starlike functions, introduced by Rønning [19], given by

$$
\mathcal{S}_{P}^{*}:=\left\{f \in \mathcal{A}: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|\right\}
$$

For a survey of uniformly starlike/convex functions, see $[1]$. For $\beta>1$, the class $\mathcal{M}(\beta)$ consists of functions $f \in \mathcal{A}$ satisfying $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)<\beta$. This class contains non-univalent functions and was investigated in [17, 24] (see also [4]). Clearly, $\mathcal{S}_{L}^{*} \subset \mathcal{S}^{*}, \mathcal{S}_{P}^{*} \subset \mathcal{S}^{*}(1 / 2)$ while $\mathcal{M}(\beta) \not \subset \mathcal{S}^{*}$.

The classes of starlike, convex and several other functions are related to the class $\mathcal{P}(\alpha)$, of analytic functions $p(z)=1+b_{1} z+b_{2} z^{2}+\cdots$ satisfying $\operatorname{Re}(p(z))>$ $\alpha(0 \leq \alpha<1), \mathcal{P}:=\mathcal{P}(0)$. It is well known [16, p. 170] that $\left|b_{n}\right| \leq 2(1-\alpha)$ for $p \in \mathcal{P}(\alpha)$. We shall denote by $\mathcal{P}_{b}(\alpha)$ the subclass of $\mathcal{P}(\alpha)$ consisting of functions of the form $p(z)=1+2 b(1-\alpha) z+\cdots,|b| \leq 1$, and let $\mathcal{P}_{b}:=\mathcal{P}_{b}(0)$.

Given two sub-families S_{1} and S_{2} of \mathcal{A}, the S_{1}-radius of S_{2} is defined to be the largest number ρ such that $r^{-1} f(r z) \in S_{1}$ for all $0<r \leq \rho$ and for all $f \in S_{2}$. Several works on radius problems can be found in [18, 21, 23]. In a recent paper, Ali et al. [4] obtained sharp radius estimates for functions $f \in \mathcal{A}$ satisfying certain
conditions on the ratio f / g for a given $g \in \mathcal{A}$. The radii results presented here are nice extensions of Ali et al. [4] and the works of [2, 18, 21, 23] for functions with fixed second coefficient, and include the radii results for the classes of starlike functions of positive order, parabolic starlike functions, and the Sokól-Stankiewicz starlike functions.

2. Preliminaries

The results that are required in the present investigation are enlisted below:
Lemma 2.1.([11, Theorem 2]) Let $|b| \leq 1$ and $0 \leq \alpha<1$. If $p \in \mathcal{P}_{b}(\alpha)$, then, for $|z|=r<1$,

$$
\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \frac{|b| r^{2}+2 r+|b|}{(1-2 \alpha) r^{2}+2(1-\alpha)|b| r+1}
$$

Lemma 2.2.([10, Lemma 1]) Let $|b| \leq 1$ and $0 \leq \alpha<1$. If $p \in \mathcal{P}_{b}(\alpha)$, then, for $|z|=r<1,\left|p(z)-C_{b}\right| \leq D_{b}$, where

$$
C_{b}=\frac{(1+|b| r)^{2}+(1-2 \alpha)(|b|+r)^{2} r^{2}}{\left(1+2|b| r+r^{2}\right)\left(1-r^{2}\right)}, \quad D_{b}=\frac{2(1-\alpha)(|b|+r)(1+|b| r) r}{\left(1+2|b| r+r^{2}\right)\left(1-r^{2}\right)}
$$

Lemma 2.3.([10, Theorem 1]) Let $|b| \leq 1$ and $0 \leq \alpha<1$. Suppose $p \in \mathcal{P}_{b}(\alpha)$. Then, for $|z|=r<1$,

$$
\operatorname{Re}\left(\frac{z p^{\prime}(z)}{p(z)}\right) \geq \begin{cases}\frac{-2(1-\alpha)\left(|b|+2 r+|b| r^{2}\right) r}{\left(1+2 \alpha|b| r+(2 \alpha-1) r^{2}\right)\left(1+2| | \mid r+r^{2}\right)}, & R^{\prime} \leq R_{b} ; \\ \left(2 \sqrt{\alpha C_{1}}-C_{1}-\alpha\right) /(1-\alpha), & R^{\prime} \geq R_{b},\end{cases}
$$

where $R_{b}=C_{b}-D_{b}, R^{\prime}=\sqrt{\alpha C_{1}}, C_{b}$ and D_{b} are as given in Lemma .
Lemma 2.4. ([5, Theorem 5.1]) If $f(z)=z+a_{2} z^{2}+\cdots \in \mathcal{K}$, then $f \in \mathcal{S}^{*}(\alpha)$, where α is the smallest positive root of the equation $2 \alpha^{3}-\left|a_{2}\right| \alpha^{2}-4 \alpha+2=0$, in the interval [1/2, 2/3].
Lemma 2.5.([3, Lemma 2.2]) For $0<a<\sqrt{2}$, let r_{a} be given by

$$
r_{a}= \begin{cases}\left(\sqrt{1-a^{2}}-\left(1-a^{2}\right)\right)^{1 / 2}, & 0<a \leq 2 \sqrt{2} / 3 \\ \sqrt{2}-a, & 2 \sqrt{2} / 3 \leq a<\sqrt{2}\end{cases}
$$

and for $a>0$, let R_{a} be given by

$$
R_{a}= \begin{cases}\sqrt{2}-a, & 0<a \leq 1 / \sqrt{2} \\ a, & 1 / \sqrt{2} \leq a\end{cases}
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset\left\{w:\left|w^{2}-1\right|<1\right\} \subset\left\{w:|w-a|<R_{a}\right\}$.

Lemma 2.6.([20, Section 3]) Let $a>1 / 2$. If the number R_{a} is given by

$$
R_{a}= \begin{cases}a-1 / 2, & 1 / 2<a \leq 3 / 2 \\ \sqrt{2 a-2}, & a \geq 3 / 2\end{cases}
$$

then $\left\{w \in \mathbb{C}:|w-a|<R_{a}\right\} \subset\{w \in \mathbb{C}:|w-a|<\operatorname{Re} w\}$.

3. Radius constants

Let

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\cdots \tag{3.1}
\end{equation*}
$$

and if $\operatorname{Re}(f(z) / z)>0$, then $f(z) / z \in \mathcal{P}$ and hence $\left|a_{2}\right| \leq 2$. So such functions can be given the series expansion: $f(z)=z+2 b z^{2}+\cdots$, where $|b| \leq 1$.

Definition 3.1. For $|b| \leq 1$, let \mathcal{F}_{b}^{1} be the class of functions $f \in \mathcal{A}_{2 b}$ such that $\operatorname{Re}(f(z) / z)>0$.

We now give below the radius constants pertaining to the class \mathcal{F}_{b}^{1} :
Theorem 3.2. The sharp radius constants for the class \mathcal{F}_{b}^{1} are enlisted below:

1. The \mathcal{S}_{L}^{*}-radius is the smallest positive root $r_{0} \in(0,1)$ of

$$
\begin{equation*}
(\sqrt{2}-1) r^{4}+2 \sqrt{2}|b| r^{3}+4 r^{2}+2|b|(2-\sqrt{2}) r-\sqrt{2}+1=0, \tag{3.2}
\end{equation*}
$$

2. The $\mathcal{M}(\beta)$-radius is the smallest positive root $r_{1} \in(0,1)$ of

$$
\begin{equation*}
(\beta-1) r^{4}+2|b| \beta r^{3}+4 r^{2}+2|b|(2-\beta) r-\beta+1=0 . \tag{3.3}
\end{equation*}
$$

3. The $\mathcal{S}^{*}(\alpha)$-radius is the smallest positive root $r_{2} \in(0,1)$ of

$$
\begin{equation*}
(1-\alpha) r^{4}+2|b|(2-\alpha) r^{3}+4 r^{2}+2|b| \alpha r+\alpha-1=0 . \tag{3.4}
\end{equation*}
$$

4. The S_{P}^{*}-radius is the smallest positive root $r_{3} \in(0,1)$ of

$$
\begin{equation*}
r^{4}+6|b| r^{3}+8 r^{2}+2|b| r-1=0 . \tag{3.5}
\end{equation*}
$$

Proof. Clearly, the function $p(z)=f(z) / z=1+2 b z+\cdots \in \mathcal{P}_{b}$ and

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{z f^{\prime}(z)}{f(z)}-1
$$

Now by taking $\alpha=0$ in Lemma 2.1, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|=\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leq \frac{2 r\left(|b| r^{2}+2 r+|b|\right)}{\left(1-r^{2}\right)\left(r^{2}+2|b| r+1\right)} \tag{3.6}
\end{equation*}
$$

(1) From Lemma 2.5, we see that

$$
\left|\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}-1\right|<1
$$

whenever the following inequality holds:

$$
\frac{2 r\left(|b| r^{2}+2 r+|b|\right)}{\left(1-r^{2}\right)\left(r^{2}+2|b| r+1\right)} \leq \sqrt{2}-1
$$

which upon simplification, becomes

$$
1-\sqrt{2}+2|b|(2-\sqrt{2}) r+4 r^{2}+2 \sqrt{2}|b| r^{3}+(\sqrt{2}-1) r^{4} \leq 0
$$

Therefore, the \mathcal{S}_{L}^{*}-radius for the class \mathcal{F}_{b}^{1}, is the smallest positive root $r_{0} \in(0,1)$ of (3.2).

To prove the sharpness, consider the function f_{0} defined by

$$
\begin{equation*}
f_{0}(z)=\frac{z\left(1+2 b z+z^{2}\right)}{1-z^{2}} \tag{3.7}
\end{equation*}
$$

together with $w(z):=z(z+b) /(1+b z)$. Then we see that

$$
\frac{f_{0}(z)}{z}=\frac{1+w(z)}{1-w(z)}
$$

where w is an analytic function satisfying the conditions of Schwarz's lemma in the unit disk \mathbb{D}, which leads to $\operatorname{Re}\left(f_{0}(z) / z\right)>0$ in \mathbb{D} and hence $f_{0} \in \mathcal{F}_{b}^{1}$. Thus, for $z=r_{0}$, the root of (3.2), we have

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{1+4 b r_{0}+4 r_{0}^{2}-r_{0}^{4}}{\left(1-r_{0}^{2}\right)\left(1+2 b r_{0}+r_{0}^{2}\right)}=\sqrt{2}
$$

it follows that

$$
\left|\left(\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}\right)^{2}-1\right|=1 \quad\left(z=r_{0}\right)
$$

which establishes sharpness of the result.
(2) The inequality (3.6) shows that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \leq 1+\frac{2 r\left(|b| r^{2}+2 r+|b|\right)}{\left(1-r^{2}\right)\left(r^{2}+2|b| r+1\right)} \leq \beta
$$

if the following inequality

$$
(\beta-1) r^{4}+2|b| \beta r^{3}+4 r^{2}+2(2-\beta)|b| r+1-\beta \leq 0
$$

holds. Therefore, the $\mathcal{M}(\beta)$-radius of the class \mathcal{F}_{b}^{1} is the smallest positive root $r_{1} \in(0,1)$ of (3.3). The result is sharp due to the function given in (3.7) as, for $z=r_{1}$, the root of (3.3), we see that

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{1+4 b r_{1}+4 r_{1}^{2}-r_{1}^{4}}{\left(1-r_{1}^{2}\right)\left(1+2 b r_{1}+r_{1}^{2}\right)}=\beta
$$

(3) In view of (3.6), it follows that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq 1-\frac{2 r\left(|b| r^{2}+2 r+|b|\right)}{\left(1-r^{2}\right)\left(r^{2}+2|b| r+1\right)} \geq \alpha
$$

whenever the following inequality

$$
(1-\alpha) r^{4}+2|b|(2-\alpha) r^{3}+4 r^{2}+2|b| \alpha r+\alpha-1 \leq 0
$$

holds. Thus, the $\mathcal{S}^{*}(\alpha)$-radius of the class \mathcal{F}_{b}^{1} is the smallest positive root $r_{2} \in(0,1)$ of (3.4).

The function f_{0} defined by

$$
\begin{equation*}
f_{0}(z)=\frac{z\left(1-z^{2}\right)}{1-2 b z+z^{2}} \tag{3.8}
\end{equation*}
$$

is in the class \mathcal{F}_{b}^{1} because for the function f_{0} defined in (3.8), we have $f_{0}(z) / z=$ $(1-w(z)) /(1+w(z))$, where $w(z)=z(z-b) /(1-b z)$ is an analytic function satisfying the conditions of Schwarz's lemma in the unit disk \mathbb{D}, and hence $\operatorname{Re}\left(f_{0}(z) / z\right)>0$ in \mathbb{D}. The result is sharp for the function given in (3.8) as, for $z=-r_{2}$, the root of (3.4), we have

$$
\operatorname{Re}\left(\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}\right)=\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{1-r_{2}^{2}\left(4-4 b r_{2}+r_{2}^{2}\right)}{\left(1-r_{2}^{2}\right)\left(1-2 b r_{2}+r_{2}^{2}\right)}=\alpha,
$$

which demonstrates sharpness.
(4) Lemma 2.6 shows that the disk (3.6) lies inside the parabolic region $\Omega=$ $\{w:|w-1|<\operatorname{Re} w\}$ provided that

$$
\frac{2 r\left(|b| r^{2}+2 r+|b|\right)}{\left(1-r^{2}\right)\left(r^{2}+2|b| r+1\right)} \leq \frac{1}{2}
$$

or equivalently, if the inequality $r^{4}+6|b| r^{3}+8 r^{2}+2|b| r-1 \leq 0$ holds. Thus, the \mathcal{S}_{P}^{*}-radius of the class \mathcal{F}_{b}^{1} is the smallest positive root $r_{3} \in(0,1)$ of (3.5).

The function defined in (3.8), for $z=-r_{3}$ satisfies

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{1-r_{3}^{2}\left(4-4 b r_{3}+r_{3}^{2}\right)}{\left(1-r_{3}^{2}\right)\left(1-2 b r_{3}+r_{3}^{2}\right)}=\frac{1}{2}
$$

which demonstrates sharpness. The following figures illustrate sharpness of the result.

Remark 3.3. For $\alpha=0$, part (3) of Theorem 3.1 reduces to the result [8, Theorem 2] of Goel.

Let

$$
\begin{equation*}
g(z)=z+g_{2} z^{2}+\cdots \tag{3.9}
\end{equation*}
$$

and assume that $g(z) / z \in \mathcal{P}$. Let f be given by (3.1) and $\operatorname{Re}(f(z) / g(z))>0$. Then we have $\left|a_{2}\right| \leq\left|g_{2}\right|+2 \leq 4$. Our next theorem focuses on the class of functions involving these functions f and g with fixed second coefficients, whose series expansions are given respectively by $f(z)=z+4 b z^{2}+\cdots$ and $g(z)=z+$ $2 c z^{2}+\cdots$, where $|b| \leq 1$ and $|c| \leq 1$.

Definition 3.4. For $|b| \leq 1$ and $|c| \leq 1$, let

$$
\mathcal{F}_{b, c}^{2}:=\left\{f \in \mathcal{A}_{4 b}: \operatorname{Re}\left(\frac{f(z)}{g(z)}\right)>0 \text { and } \operatorname{Re}\left(\frac{g(z)}{z}\right)>0, \text { where } g \in \mathcal{A}_{2 c}\right\} .
$$

Here below, we furnish the radius constants for the class $\mathcal{F}_{b, c}^{2}$:
Theorem 3.5. Assume that $\gamma:=|2 b-c|$. Then the sharp radius constants for the class $\mathcal{F}_{b, c}^{2}$ are enlisted below:
(1) The \mathcal{S}_{L}^{*}-radius is the smallest positive root $r_{0} \in(0,1)$ of

$$
(\sqrt{2}-1) r^{6}+(|c|+\gamma) 2 \sqrt{2} r^{5}+(7+\sqrt{2}+4(1+\sqrt{2})|c| \gamma) r^{4}+12(|c|+\gamma) r^{3}
$$

$$
\begin{equation*}
+(9-\sqrt{2}+4(3-\sqrt{2})|c| \gamma) r^{2}+2(2-\sqrt{2})(|c|+\gamma) r-\sqrt{2}+1=0 \tag{3.10}
\end{equation*}
$$

(2) The $\mathcal{M}(\beta)$-radius is the smallest positive root $r_{1} \in(0,1)$ of

$$
\begin{align*}
& (\beta-1) r^{6}+2 \beta(|c|+\gamma) r^{5}+(7+\beta+4(1+\beta)|c| \gamma) r^{4}+12(|c|+\gamma) r^{3} \\
& \quad+(9-\beta+4(3-\beta)|c| \gamma) r^{2}+2(2-\beta)(|c|+\gamma) r-\beta+1=0 \tag{3.11}
\end{align*}
$$

(3) The $\mathcal{S}^{*}(\alpha)$-radius is the smallest positive root $r_{2} \in(0,1)$ of

$$
(1-\alpha) r^{6}+2(2-\alpha)(|c|+\gamma) r^{5}+(9-\alpha+4(3-\alpha)|c| \gamma) r^{4}+12(|c|+\gamma) r^{3}
$$

$$
\begin{equation*}
+(7+\alpha+4(1+\alpha)|c| \gamma) r^{2}+2(|c|+\gamma) \alpha r+\alpha-1=0 \tag{3.12}
\end{equation*}
$$

(4) The \mathcal{S}_{P}^{*}-radius is the smallest positive root $r_{3} \in(0,1)$ of
$r^{6}+6(|c|+\gamma) r^{5}+(17+20 \gamma|c|) r^{4}+24(|c|+\gamma) r^{3}+(15+12 \gamma|c|) r^{2}+2(|c|+\gamma) r-1=0$.

Proof. Let the functions p and h be defined by $p(z)=g(z) / z$, and $h(z)=f(z) / g(z)$. Then

$$
p(z)=1+2 c z+\cdots \quad \text { and } \quad h(z)=1+2(2 b-c) z+\cdots
$$

or $p \in \mathcal{P}_{c}$ and $h \in \mathcal{P}_{2 b-c}$. Since $f(z)=z p(z) h(z)$, from Lemma 2.1 with $\alpha=0$, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq\left|\frac{z p^{\prime}(z)}{p(z)}\right|+\left|\frac{z h^{\prime}(z)}{h(z)}\right| \leq \frac{2 r}{1-r^{2}}\left(\frac{|c| r^{2}+2 r+|c|}{r^{2}+2|c| r+1}+\frac{\gamma r^{2}+2 r+\gamma}{r^{2}+2 \gamma r+1}\right) \tag{3.14}
\end{equation*}
$$

(1) By Lemma 2.5, the function f satisfies $\left|\left(z f^{\prime}(z) / f(z)\right)^{2}-1\right|<1$, for $|z|<r$, if the following inequality holds

$$
\frac{2 r}{1-r^{2}}\left(\frac{|c| r^{2}+2 r+|c|}{r^{2}+2|c| r+1}+\frac{\gamma r^{2}+2 r+\gamma}{r^{2}+2 \gamma r+1}\right) \leq \sqrt{2}-1
$$

or equivalently, if the following inequality holds:

$$
\begin{aligned}
& (\sqrt{2}-1) r^{6}+(|c|+\gamma) 2 \sqrt{2} r^{5}+(7+\sqrt{2}+4(1+\sqrt{2})|c| \gamma) r^{4}+12(|c|+\gamma) r^{3} \\
& \quad+(9-\sqrt{2}+4(3-\sqrt{2})|c| \gamma) r^{2}+2(2-\sqrt{2})(|c|+\gamma) r-\sqrt{2}+1 \leq 0
\end{aligned}
$$

Therefore, the \mathcal{S}_{L}^{*}-radius of the class $\mathcal{F}_{b, c}^{2}$ is the smallest positive root $r_{0} \in(0,1)$ of (3.10).

Consider the functions defined by

$$
\begin{equation*}
f_{0}(z)=\frac{z\left(1+(4 b-2 c) z+z^{2}\right)\left(1+2 c z+z^{2}\right)}{\left(1-z^{2}\right)^{2}} \quad \text { and } g_{0}(z)=\frac{z\left(1+2 c z+z^{2}\right)}{\left(1-z^{2}\right)} \tag{3.15}
\end{equation*}
$$

The function f_{0} with the choice of g_{0}, defined above, is in the class $\mathcal{F}_{b, c}^{2}$ because

$$
\frac{f_{0}(z)}{g_{0}(z)}=\frac{1+w_{1}(z)}{1-w_{1}(z)} \quad \text { and } \quad \frac{g_{0}(z)}{z}=\frac{1+w_{2}(z)}{1-w_{2}(z)}
$$

where $w_{1}(z)=z(z+2 b-c) /(1+(2 b-c) z)$ with $|2 b-c| \leq 1$ and $w_{2}(z)=z(z+$ $c) /(1+c z)$ are analytic functions satisfying the conditions of Schwarz's lemma in the unit disk \mathbb{D}, and hence $\operatorname{Re}\left(g_{0}(z) / z\right)>0$ and $\operatorname{Re}\left(f_{0}(z) / g_{0}(z)\right)>0$ in \mathbb{D}. Since (3.16)
$\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=1+\frac{2}{1-r_{0}}+\frac{2}{1+r_{0}}-\frac{2\left(1+c r_{0}\right)}{1+2 c r_{0}+r_{0}^{2}}-\frac{2+4 b r_{0}-2 c r_{0}}{1+r_{0}\left(4 b-2 c+r_{0}\right)}=\sqrt{2}, \quad\left(z=r_{0}\right)$,
we have

$$
\left|\left(\frac{z f_{0}(z)}{f_{0}(z)}\right)^{2}-1\right|=1
$$

Thus, the result is sharp.
(2) The inequality (3.14) shows that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \leq 1+\frac{2 r}{1-r^{2}}\left(\frac{|c| r^{2}+2 r+|c|}{r^{2}+2|c| r+1}+\frac{\gamma r^{2}+2 r+\gamma}{r^{2}+2 \gamma r+1}\right) \leq \beta
$$

if the following inequality holds:

$$
\begin{aligned}
& (\beta-1) r^{6}+2 \beta(|c|+\gamma) r^{5}+(7+\beta+4(1+\beta)|c| \gamma) r^{4}+12(|c|+\gamma) r^{3} \\
& \quad+(9-\beta+4(3-\beta)|c| \gamma) r^{2}+2(2-\beta)(|c|+\gamma) r-\beta+1 \leq 0
\end{aligned}
$$

Hence the $\mathcal{M}(\beta)$-radius of the class $\mathcal{F}_{b, c}^{2}$ is the smallest positive root $r_{1} \in(0,1)$ of (3.11). The result is sharp due to the functions given in (3.15) as it can be seen for $z=r_{1}$
(3.17) $\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=1+\frac{2}{1-r_{1}}+\frac{2}{1+r_{1}}-\frac{2\left(1+c r_{1}\right)}{1+2 c r_{1}+r_{1}^{2}}-\frac{2+4 b r_{1}-2 c r_{1}}{1+r_{1}\left(4 b-2 c+r_{1}\right)}=\beta$.
(3) In view of (3.14), it follows that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq 1-\frac{2 r}{1-r^{2}}\left(\frac{|c| r^{2}+2 r+|c|}{r^{2}+2|c| r+1}+\frac{\gamma r^{2}+2 r+\gamma}{r^{2}+2 \gamma r+1}\right) \geq \alpha
$$

if the following inequality holds:

$$
\begin{aligned}
& (1-\alpha) r^{6}+2(2-\alpha)(|c|+\gamma) r^{5}+(9-\alpha+4(3-\alpha)|c| \gamma) r^{4}+12(|c|+\gamma) r^{3} \\
& \quad+(7+\alpha+4(1+\alpha)|c| \gamma) r^{2}+2(|c|+\gamma) \alpha r+\alpha-1 \leq 0
\end{aligned}
$$

Thus, the $\mathcal{S}^{*}(\alpha)$-radius of the class $\mathcal{F}_{b, c}^{2}$ is the smallest positive root $r_{2} \in(0,1)$ of (3.12).

Consider the functions defined by

$$
\begin{equation*}
f_{0}(z)=\frac{z\left(1-z^{2}\right)^{2}}{\left(1-(4 b-2 c) z+z^{2}\right)\left(1-2 c z+z^{2}\right)} \text { and } g_{0}(z)=\frac{z\left(1-z^{2}\right)}{\left(1-2 c z+z^{2}\right)} \tag{3.18}
\end{equation*}
$$

The function f_{0}, with the choice of g_{0} defined in (3.18), is in the class \mathcal{F}_{b}^{2} because

$$
\frac{f_{0}(z)}{g_{0}(z)}=\frac{1-w_{1}(z)}{1+w_{1}(z)} \text { and } \frac{g_{0}(z)}{z}=\frac{1-w_{2}(z)}{1+w_{2}(z)}
$$

where $w_{1}(z)=z(z-(2 b-c)) /(1-(2 b-c) z)$ with $|2 b-c| \leq 1$ and $w_{2}(z)=$ $z(z-c) /(1-c z)$ are analytic functions satisfying the conditions of Schwarz's lemma in the unit disk \mathbb{D}, and hence $\operatorname{Re}\left(g_{0}(z) / z\right)>0$ and $\operatorname{Re}\left(f_{0}(z) / g_{0}(z)\right)>0$ in \mathbb{D}. The functions defined in (3.18) satisfy

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=1-\frac{2}{1+r_{2}}-\frac{2}{1-r_{2}}+\frac{2+2 c r_{2}}{1+2 c r_{2}+r_{2}^{2}}+\frac{2\left(1+2 b r_{2}-c r_{2}\right)}{1+r_{2}\left(4 b-2 c+r_{2}\right)}=\alpha \quad\left(z=-r_{2}\right)
$$

which demonstrates the sharpness.
(4) By Lemma 2.6, the disk (3.14) lies inside the parabolic region $\Omega=\{w$: $|w-1|<\operatorname{Re} w\}$ provided

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{2 r}{1-r^{2}}\left(\frac{|c| r^{2}+2 r+|c|}{r^{2}+2|c| r+1}+\frac{\gamma r^{2}+2 r+\gamma}{r^{2}+2 \gamma r+1}\right) \leq \frac{1}{2}
$$

or equivalently, if $r^{6}+6(|c|+\gamma) r^{5}+(17+20 \gamma|c|) r^{4}+24(|c|+\gamma) r^{3}+(15+12 \gamma|c|) r^{2}+$ $2(|c|+\gamma) r-1 \leq 0$. Thus, the \mathcal{S}_{P}^{*}-radius of the class \mathcal{F}_{b}^{2} is the smallest positive root $r_{3} \in(0,1)$ of (3.13). The functions defined in (3.18) satisfy, for $z=-r_{3}$,

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=1-\frac{2}{1+r_{3}}-\frac{2}{1-r_{3}}+\frac{2\left(1+c r_{3}\right)}{1+2 c r_{3}+r_{3}^{2}}+\frac{2\left(1+2 b r_{3}-c r_{3}\right)}{1+r_{3}\left(4 b-2 c+r_{3}\right)}=\frac{1}{2},
$$

which demonstrates sharpness.
Remark 3.6. Setting $b=1=c$, in Theorem 3.5, we obtain the result [4, Theorem 2.1] of Ali et al.

Let the functions f and g be given by (3.1) and (3.9) respectively. Assume that f and g are satisfying $\operatorname{Re}(f(z) / g(z))>0$ and $\operatorname{Re}(g(z) / z)>1 / 2$ in \mathbb{D}. Then we have $\left|a_{2}\right| \leq\left|g_{2}\right|+2 \leq 3$. In the following theorem we shall discuss some radius problems for functions with fixed second coefficients whose series expansion are given respectively by $f(z)=z+3 b z^{2}+\cdots$ and $g(z)=z+c z^{2}+\cdots$ with $|b| \leq 1$ and $|c| \leq 1$.
Definition 3.7. For $|b| \leq 1$ and $|c| \leq 1$, let

$$
\mathcal{F}_{b, c}^{3}:=\left\{f \in \mathcal{A}_{3 b}: \operatorname{Re}\left(\frac{f(z)}{g(z)}\right)>0, \text { and } \operatorname{Re}\left(\frac{g(z)}{z}\right)>\frac{1}{2}, \text { where } g \in \mathcal{A}_{c}\right\} .
$$

Now the radius constants for the class $\mathcal{F}_{b, c}^{3}$ are established in the following result.

Theorem 3.8. Assume that $\gamma_{1}=|3 b-c|$. For the class $\mathcal{F}_{b, c}^{3}$,

1. the \mathcal{S}_{L}^{*}-radius is the smallest positive root $r_{0} \in(0,1)$ of

$$
\begin{align*}
& \sqrt{2}|c| r^{5}+(1+\sqrt{2})\left(1+|c| \gamma_{1}\right) r^{4}+\left(6|c|+\sqrt{2}(1+\sqrt{2}) \gamma_{1}\right) r^{3} \\
& \quad+\left(6+(3-\sqrt{2})|c| \gamma_{1}\right) r^{2}+\sqrt{2}(\sqrt{2}-1)\left(|c|+\gamma_{1}\right) r-\sqrt{2}+1=0 \tag{3.19}
\end{align*}
$$

and it is sharp.
2. the $\mathcal{M}(\beta)$-radius is the smallest positive root $r_{1} \in(0,1)$ of

$$
\begin{align*}
& |c| \beta r^{5}+(1+\beta)\left(1+|c| \gamma_{1}\right) r^{4}+\left(6|c|+(2+\beta) \gamma_{1}\right) r^{3} \\
& \quad+\left(6+(3-\beta)|c| \gamma_{1}\right) r^{2}+(2-\beta)\left(|c|+\gamma_{1}\right) r-\beta+1=0 \tag{3.20}
\end{align*}
$$

and it is sharp.
3. the $\mathcal{S}^{*}(\alpha)$-radius is the smallest positive root $r_{2} \in(0,1)$ of

$$
\begin{aligned}
& -|c| \alpha r^{7}+\left(|c|(1-\alpha)\left(\gamma_{1}+2|c|\right)-1-\alpha\right) r^{6}+\left(|c|(2-\alpha)\left(3+2|c| \gamma_{1}\right)-\alpha \gamma_{1}\right) r^{5} \\
& \quad+\left(5+8|c|^{2}-\alpha+2(3-\alpha)|c| \gamma_{1}\right) r^{4}+\left((12+\alpha)|c|+2\left(2+|c|^{2} \alpha\right) \gamma_{1}\right) r^{3} \\
& \quad+\left(5-2|c|^{2}+\alpha+2|c|^{2} \alpha+(1+3 \alpha)|c| \gamma_{1}\right) r^{2}+\left(2|c|+3|c| \alpha+\alpha \gamma_{1}\right) r
\end{aligned}
$$

$$
\begin{equation*}
+\alpha-1=0 \tag{3.21}
\end{equation*}
$$

4. the \mathcal{S}_{P}^{*}-radius is the smallest positive root $r_{3} \in(0,1)$ of

$$
|c| r^{7}+\left(1+4|c|^{2}+3|c| \gamma_{1}\right) r^{6}+\left(17|c|+3 \gamma_{1}+8|c|^{2} \gamma_{1}\right) r^{5}+\left(13+20|c|^{2}+16|c| \gamma_{1}\right) r^{4}
$$

$$
\begin{equation*}
+\left(31|c|+8 \gamma_{1}+4|c|^{2} \gamma_{1}\right) r^{3}+\left(11+5|c| \gamma_{1}\right) r^{2}+\left(\gamma_{1}-|c|\right) r-1=0 \tag{3.22}
\end{equation*}
$$

Proof. Define the functions p and h by $p(z)=g(z) / z$ and $h(z)=f(z) / g(z)$

$$
\begin{equation*}
p(z)=1+c z+\cdots \text { and } h(z)=\frac{f(z)}{g(z)}=1+(3 b-c) z+\cdots \tag{3.23}
\end{equation*}
$$

or $p \in \mathcal{P}_{c / 2}(1 / 2)$ and $h \in \mathcal{P}_{(3 b-c) / 2}$. Lemma 2.1 with $\alpha=0$ and $\alpha=1 / 2$ respectively lead to

$$
\begin{equation*}
\left|\frac{z h^{\prime}(z)}{h(z)}\right| \leq \frac{r}{1-r^{2}} \frac{\gamma_{1} r^{2}+4 r+\gamma_{1}}{r^{2}+\gamma_{1} r+1} \text { and }\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leq \frac{r}{1-r^{2}} \frac{|c| r^{2}+2 r+|c|}{|c| r+1} \tag{3.24}
\end{equation*}
$$

From (3.23), $f(z) / z=p(z) h(z)$, and so the inequalities in (3.24) yields

$$
\begin{align*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| & \leq\left|\frac{z h^{\prime}(z)}{h(z)}\right|+\left|\frac{z p^{\prime}(z)}{p(z)}\right| \\
& \leq \frac{r}{1-r^{2}}\left(\frac{\gamma_{1} r^{2}+4 r+\gamma_{1}}{r^{2}+\gamma_{1} r+1}+\frac{|c| r^{2}+2 r+|c|}{|c| r+1}\right) . \tag{3.25}
\end{align*}
$$

(1) By Lemma 2.5, the function f satisfies $\left|\left(z f^{\prime}(z) / f(z)\right)^{2}-1\right|<1$, for $|z|<r$, if the following inequality holds

$$
\frac{r}{1-r^{2}}\left(\frac{\gamma_{1} r^{2}+4 r+\gamma_{1}}{r^{2}+\gamma_{1} r+1}+\frac{|c| r^{2}+2 r+|c|}{|c| r+1}\right) \leq \sqrt{2}-1
$$

or equivalently, if the following inequality holds:

$$
\begin{aligned}
& \sqrt{2}|c| r^{5}+(1+\sqrt{2})\left(1+|c| \gamma_{1}\right) r^{4}+\left(6|c|+\sqrt{2}(1+\sqrt{2}) \gamma_{1}\right) r^{3} \\
& \quad+\left(6+(3-\sqrt{2})|c| \gamma_{1}\right) r^{2}+\sqrt{2}(\sqrt{2}-1)\left(|c|+\gamma_{1}\right) r-\sqrt{2}+1 \leq 0
\end{aligned}
$$

Therefore, the \mathcal{S}_{L}^{*}-radius of the class $\mathcal{F}_{b, c}^{3}$ is the smallest positive root $r_{0} \in(0,1)$ of (3.19). Consider the functions defined by

$$
\begin{equation*}
f_{0}(z)=\frac{z\left(1+(3 b-c) z+z^{2}\right)(1+c z)}{\left(1-z^{2}\right)^{2}} \text { and } g_{0}(z)=\frac{z(1+c z)}{\left(1-z^{2}\right)} \tag{3.26}
\end{equation*}
$$

The function f_{0} with the choice g_{0}, defined in (3.26), is in the class $\mathcal{F}_{b, c}^{3}$ because

$$
\frac{f_{0}(z)}{g_{0}(z)}=\frac{1+w_{1}(z)}{1-w_{1}(z)} \quad \text { and } \quad \frac{g_{0}(z)}{z}=\frac{1+w_{2}(z)}{1-w_{2}(z)}
$$

where $w_{1}(z)=z(z+(3 b-c) / 2) /\left(1+((3 b-c) z / 2)\right.$ with $|3 b-c| \leq 2$ and $w_{2}(z)=$ $z(z+c / 2) /(1+c z / 2)$ are analytic functions satisfying the conditions of Schwarz's lemma in the unit disk \mathbb{D}, and hence $\operatorname{Re}\left(g_{0}(z) / z\right)>1 / 2$ and $\operatorname{Re}\left(f_{0}(z) / g_{0}(z)\right)>0$ in \mathbb{D}. Since

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{2}{1-r_{0}}+\frac{2}{1+r_{0}}-\frac{1}{1+c r_{0}}-\frac{2+3 b r_{0}-c r_{0}}{1+r_{0}\left(3 b-c+r_{0}\right)}=\sqrt{2}
$$

for $z=r_{0}$, the root of (3.19), we have $\left|\left(z f_{0}(z) / f_{0}(z)\right)^{2}-1\right|=1$. Thus, the result is sharp.
(2) The inequality (3.25) shows that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \leq \frac{r}{1-r^{2}}\left(\frac{\gamma_{1} r^{2}+4 r+\gamma_{1}}{r^{2}+\gamma_{1} r+1}+\frac{|c| r^{2}+2 r+|c|}{|c| r+1}\right)+1 \leq \beta
$$

if the following inequality holds:

$$
\begin{aligned}
& \beta|c| r^{5}+(1+\beta)\left(1+|c| \gamma_{1}\right) r^{4}+\left(6|c|+(2+\beta) \gamma_{1}\right) r^{3} \\
& \quad+\left(6+(3-\beta)|c| \gamma_{1}\right) r^{2}+(2-\beta)\left(|c|+\gamma_{1}\right) r-\beta+1 \leq 0 .
\end{aligned}
$$

Therefore the $\mathcal{N}(\beta)$-radius of the class $\mathcal{F}_{b, c}^{3}$ is the smallest positive root $r_{1} \in(0,1)$ of (3.20). The result is sharp for the functions given in (3.26) as it can be seen that, for $z=r_{1}$, the root of (3.20), we have

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{2}{1-r_{1}}+\frac{2}{1+r_{1}}-\frac{1}{1+c r_{1}}-\frac{2+3 b r_{1}-c r_{1}}{1+r_{1}\left(3 b-c+r_{1}\right)}=\beta
$$

(3) Since $f(z) / z=p(z) h(z)$, it follows from Lemma 2.1 and Lemma 2.3 that
(3.27) $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq 1-\frac{\left(\gamma_{1} r^{2}+4 r+\gamma_{1}\right) r}{\left(r^{2}+\gamma_{1} r+1\right)\left(1-r^{2}\right)}+\frac{\left(|c|+2 r+|c| r^{2}\right) r}{\left(1+2|c| r+r^{2}\right)(1+|c| r)} \geq \alpha$,
if the following inequality holds:

$$
\begin{aligned}
- & |c| \alpha r^{7}+\left(|c|(1-\alpha)\left(\gamma_{1}+2|c|\right)-1-\alpha\right) r^{6}+\left(|c|(2-\alpha)\left(3+2|c| \gamma_{1}\right)-\alpha \gamma_{1}\right) r^{5} \\
& +\left(5+8|c|^{2}-\alpha+2(3-\alpha)|c| \gamma_{1}\right) r^{4}+\left((12+\alpha)|c|+2\left(2+|c|^{2} \alpha\right) \gamma_{1}\right) r^{3} \\
& +\left(5-2|c|^{2}+\alpha+2|c|^{2} \alpha+(1+3 \alpha)|c| \gamma_{1}\right) r^{2}+\left(2|c|+3|c| \alpha+\alpha \gamma_{1}\right) r+\alpha-1 \leq 0 .
\end{aligned}
$$

Thus, the $\mathcal{S}^{*}(\alpha)$-radius of the class $\mathcal{F}_{b, c}^{3}$ is the smallest positive root $r_{2} \in(0,1)$ of (3.21).
(4) From (3.25) and (3.27), it is clear that $\left|\left(z f^{\prime}(z) / f(z)\right)-1\right|<\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)$ provided

$$
\begin{aligned}
1 & -\frac{\left(\gamma_{1} r^{2}+4 r+\gamma_{1}\right) r}{\left(r^{2}+\gamma_{1} r+1\right)\left(1-r^{2}\right)}+\frac{\left(|c|+2 r+|c| r^{2}\right) r}{\left(1+2|c| r+r^{2}\right)(1+|c| r)} \\
& \geq \frac{r}{1-r^{2}}\left(\frac{\gamma_{1} r^{2}+4 r+\gamma_{1}}{r^{2}+\gamma_{1} r+1}+\frac{|c| r^{2}+2 r+|c|}{|c| r+1}\right)
\end{aligned}
$$

or equivalently, if the following inequality holds:

$$
\begin{aligned}
& |c| r^{7}+\left(1+4|c|^{2}+3|c| \gamma_{1}\right) r^{6}+\left(17|c|+3 \gamma_{1}+8|c|^{2} \gamma_{1}\right) r^{5}+\left(13+20|c|^{2}+16|c| \gamma_{1}\right) r^{4} \\
& \quad+\left(31|c|+8 \gamma_{1}+4|c|^{2} \gamma_{1}\right) r^{3}+\left(11+5|c| \gamma_{1}\right) r^{2}+\left(\gamma_{1}-|c|\right) r-1 \leq 0 .
\end{aligned}
$$

Thus the \mathcal{S}_{P}^{*}-radius of the class $\mathcal{F}_{b, c}^{3}$ is the smallest positive root r_{3} in $(0,1)$ of (3.22).

Remark 3.9. Putting $b=1=c$ in Theorem 3.8, we obtain the result [4, Theorem 2.2] of Ali et al.

Now consider the functions f and g, given by (3.1) and (3.9) respectively. Suppose that f and g satisfy the conditions $|f(z) / g(z)-1|<1$ and $\operatorname{Re}(g(z) / z)>0$ in \mathbb{D}. Then it follows that $\left|a_{2}\right| \leq\left|g_{2}\right|+2 \leq 3$. Thus such functions with fixed second coefficient, satisfying the above conditions can have the series expansion namely $f(z)=z+3 b z^{2}+\cdots$ and $g(z)=z+2 c z^{2}+\cdots$ with $|b| \leq 1$ and $|c| \leq 1$.
Definition 3.10. For $|b| \leq 1$ and $|c| \leq 1$, let

$$
\mathcal{F}_{b, c}^{4}:=\left\{f \in \mathcal{A}_{3 b}:\left|\frac{f(z)}{g(z)}-1\right|<1, \text { and } \operatorname{Re}\left(\frac{g(z)}{z}\right)>0, \text { where } g \in \mathcal{A}_{2 c}\right\} .
$$

Now in the following result, we provide the radius constants for the class $\mathcal{F}_{b, c}^{3}$.
Theorem 3.11. Assume that $\delta:=|2 c-3 b|$. For the class $\mathcal{F}_{b, c}^{4}$,

1. the \mathcal{S}_{L}^{*}-radius is the smallest positive root $r_{0} \in(0,1)$ of

$$
\begin{align*}
& \left.\sqrt{2} \delta r^{5}+(1+\sqrt{2})(1+2 \delta|c|)\right) r^{4}+2(3 \delta+\sqrt{2}(1+\sqrt{2})|c|) r^{3} \\
& \quad+2(3+(3-\sqrt{2}) \delta|c|) r^{2}+(2-\sqrt{2})(\delta+2|c|) r-\sqrt{2}+1=0 \tag{3.28}
\end{align*}
$$

2. the $\mathcal{M}(\beta)$-radius is the smallest positive root $r_{1} \in(0,1)$ of

$$
\begin{align*}
& \beta \delta r^{5}+(1+\beta)(1+2 \delta|c|) r^{4}+2(3 \delta+2|c|+|c| \beta) r^{3} \\
& \quad+2(3+(3-\beta) \delta|c|) r^{2}+(2-\beta)(\delta+2|c|) r-\beta+1=0 . \tag{3.29}
\end{align*}
$$

3. the $f \in \mathfrak{S}^{*}(\alpha)$-radius is the smallest positive root $r_{2} \in(0,1)$ of

$$
\begin{align*}
& (2-\alpha) \delta r^{5}+(1+2 \delta|c|)(3-\alpha) r^{4}+2(3 \delta+4|c|-|c| \alpha) r^{3} \\
& \quad+(\delta+2|c|) \alpha r^{2}+2(3+(1+\alpha) \delta|c|) r+\alpha-1=0 . \tag{3.30}
\end{align*}
$$

4. the \mathcal{S}_{P}^{*}-radius is the smallest positive root $r_{3} \in(0,1)$ of
(3.31) $3 \delta r^{5}+5(1+2 \delta|c|) r^{4}+2(6 \delta+7|c|) r^{3}+6(2+\delta|c|) r^{2}+(\delta+2|c|) r-1=0$.

Proof. It is easy to see that $|f(z) / g(z)-1|<1$ if and only if $\operatorname{Re}(g(z) / f(z))>1 / 2$. Define the functions p and h by $p(z)=g(z) / z$, and $h(z)=g(z) / f(z)$. Then

$$
p(z)=1+2 c z+\cdots \text { and } h(z)=\frac{g(z)}{f(z)}=1+(2 c-3 b) z+\cdots
$$

or $p \in \mathcal{P}_{c}$ and $h \in \mathcal{P}_{(2 c-3 b) / 2}(1 / 2)$. Lemma 2.1 with $\alpha=0$ and $\alpha=1 / 2$ respectively lead to

$$
\begin{equation*}
\left|\frac{z h^{\prime}(z)}{h(z)}\right| \leq \frac{2 r\left(|c| r^{2}+2 r+|c|\right)}{\left(1-r^{2}\right)\left(r^{2}+2|c| r+1\right)} \text { and }\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leq \frac{r\left(\delta r^{2}+2 r+\delta\right)}{\left(1-r^{2}\right)(\delta r+1)} \tag{3.32}
\end{equation*}
$$

respectively, where $\delta:=|2 c-3 b|$. Since $z p(z)=f(z) h(z)$, from (3.32), we have

$$
\begin{align*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| & \leq\left|\frac{z p^{\prime}(z)}{p(z)}\right|+\left|\frac{z h^{\prime}(z)}{h(z)}\right| \\
& \leq \frac{r}{1-r^{2}}\left(\frac{2\left(|c| r^{2}+2 r+|c|\right)}{r^{2}+2 q r+1}+\frac{\left(\delta r^{2}+2 r+\delta\right)}{\delta r+1}\right) . \tag{3.33}
\end{align*}
$$

(1) By Lemma 2.5, the function f satisfies $\left|\left(z f^{\prime}(z) / f(z)\right)^{2}-1\right|<1$, if the following inequality holds:

$$
\frac{r}{1-r^{2}}\left(\frac{2\left(|c| r^{2}+2 r+|c|\right)}{r^{2}+2 q r+1}+\frac{\left(\delta r^{2}+2 r+\delta\right)}{\delta r+1}\right) \leq \sqrt{2}-1,
$$

or equivalently, if

$$
\begin{aligned}
& \left.\sqrt{2} \delta r^{5}+(1+\sqrt{2})(1+2 \delta|c|)\right) r^{4}+2(3 \delta+\sqrt{2}(1+\sqrt{2})|c|) r^{3} \\
& \quad+2(3+(3-\sqrt{2}) \delta|c|) r^{2}+(2-\sqrt{2})(\delta+2|c|) r-\sqrt{2}+1 \leq 0
\end{aligned}
$$

Therefore the \mathcal{S}_{L}^{*}-radius of the class $\mathcal{F}_{b, c}^{4}$ is the smallest positive root $r_{0} \in(0,1)$ of (3.28).
(2) Using (3.33), we get

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \leq 1+\frac{r}{1-r^{2}}\left(\frac{2\left(|c| r^{2}+2 r+|c|\right)}{r^{2}+2 q r+1}+\frac{\left(\delta r^{2}+2 r+\delta\right)}{\delta r+1}\right) \leq \beta
$$

if the following inequality holds:

$$
\begin{aligned}
& \beta \delta r^{5}+(1+\beta)(1+2 \delta|c|) r^{4}+2(3 \delta+2|c|+|c| \beta) r^{3} \\
& \quad+2(3+(3-\beta) \delta|c|) r^{2}+(2-\beta)(\delta+2|c|) r-\beta+1 \leq 0
\end{aligned}
$$

Therefore, the $\mathcal{M}(\beta)$-radius of the class $\mathcal{F}_{b, c}^{4}$ is the smallest positive root $r_{1} \in(0,1)$ of (3.29).
(3) Inequality in (3.33) implies that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq 1-\frac{r}{1-r^{2}}\left(\frac{2\left(|c| r^{2}+2 r+|c|\right)}{r^{2}+2 q r+1}+\frac{\left(\delta r^{2}+2 r+\delta\right)}{\delta r+1}\right) \geq \alpha
$$

if the following inequality holds:

$$
\begin{aligned}
& (2-\alpha) \delta r^{5}+(1+2 \delta|c|)(3-\alpha) r^{4}+2(3 \delta+4|c|-|c| \alpha) r^{3} \\
& \quad+(\delta+2|c|) \alpha r^{2}+2(3+(1+\alpha) \delta|c|) r+\alpha-1 \leq 0 .
\end{aligned}
$$

Thus, the $\mathcal{S}^{*}(\alpha)$-radius of the class $\mathcal{F}_{b, c}^{4}$ is the smallest positive root in $r_{2} \in(0,1)$ of (3.30).
(4) Lemma 2.6 shows that the disk (3.33) lies inside $\Omega=\{w:|w-1|<\operatorname{Re} w\}$, the parabolic region, provided

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{r}{1-r^{2}}\left(\frac{2\left(|c| r^{2}+2 r+|c|\right)}{r^{2}+2 q r+1}+\frac{\left(\delta r^{2}+2 r+\delta\right)}{\delta r+1}\right) \leq \frac{1}{2}
$$

if the following inequality holds:

$$
3 \delta r^{5}+5(1+2 \delta|c|) r^{4}+2(6 \delta+7|c|) r^{3}+6(2+\delta|c|) r^{2}+(\delta+2|c|) r-1 \leq 0
$$

Therefore, the \mathcal{S}_{P}^{*}-radius of the class $\mathcal{F}_{b, c}^{4}$ is the smallest positive root $r_{3} \in(0,1)$ of (3.31).

Remark 3.12. Note that, in addition, we obtain the following sharp results of [4, Theorem 2.3] of Ali et al. as special case to parts (3) and (4) of Theorem 3.11 when $b=1=c$.

For the class $\mathcal{F}_{1,1}^{4}$,
(1) the $\mathcal{S}_{L}^{*}-$ radius, $r_{0}=\frac{2(2-\sqrt{2})}{\sqrt{2}(\sqrt{17-4 \sqrt{2}}+3)}$,
(2) the $\mathcal{M}(\beta)$-radius, $r_{1}=\frac{2(\beta-1)}{3+\sqrt{9+4 \beta(\beta-1)}}$,
(3) the sharp $f \in \mathcal{S}^{*}(\alpha)-$ radius, $r_{2}=\frac{2(1-\alpha)}{3+\sqrt{9+4 \beta(1-\alpha)(2-\alpha)}}$,
(4) the sharp \mathcal{S}_{P}^{*}-radius, $r_{3}=\frac{2 \sqrt{3}-3}{3}$.

Consider the functions f and g given by (3.1) and (3.9) respectively. Further assume that f and g satisfy the condition $|f(z) / g(z)-1|<1$ and g is a convex function in the unit disk \mathbb{D}. Then we have $\left|a_{2}\right| \leq\left|g_{2}\right|+1 \leq 2$. In the next theorem, we consider such functions with fixed second coefficient, whose series expansion are given by $f(z)=z+2 b z^{2}+\cdots$ and $g(z)=z+c z^{2}+\cdots$ with $|b| \leq 1$ and $|c| \leq 1$.
Definition 3.13. For $|b| \leq 1$ and $|c| \leq 1$, let

$$
\mathcal{F}_{b, c}^{5}:=\left\{f \in \mathcal{A}_{2 b}: \operatorname{Re}\left(\frac{f(z)}{g(z)}\right)>0, \text { where } g \in \mathcal{A}_{c} \cap \mathcal{K}=\mathcal{K}_{c}\right\} .
$$

We now obtain the radius constants for the class $\mathcal{F}_{b, c}^{3}$ in the following result.
Theorem 3.14. Assume that $\delta_{1}:=|c-2 b|$. For the class $\mathcal{F}_{b, c}^{5}$,

1. the $\mathcal{S}^{*}(\lambda)$-radius is the smallest root $r_{0} \in(0,1)$ of

$$
\begin{aligned}
& \left(\delta_{1}+\beta_{0} \delta_{1}-\delta_{1} \lambda\right) r^{5}+\left(2+\beta_{0}+3|c| \delta_{1}+|c| \beta_{0} \delta_{1}-\lambda-2|c| \delta_{1} \lambda\right) r^{4} \\
& \quad+\left(5|c|+|c| \beta_{0}+3 \delta_{1}-\beta_{0} \delta_{1}-2|c| \lambda\right) r^{3}+\left(3-\beta_{0}+\left(1-\beta_{0}+2 \lambda\right) \delta_{1}|c|\right) r^{2}
\end{aligned}
$$

$$
\begin{equation*}
+\left(2|c| \lambda+\delta_{1} \lambda-|c|-|c| \beta_{0}\right) r+\lambda-1=0 \tag{3.34}
\end{equation*}
$$

where $\beta_{0}=2 \alpha_{0}-1$ and $\alpha_{0} \in(0,1)$ is the smallest positive root of the equation

$$
2 \alpha^{3}-q \alpha^{2}-4 \alpha+2=0
$$

in the interval $[1 / 2,2 / 3]$.
2. the \mathcal{S}_{P}^{*}-radius is the smallest root $r_{1} \in(0,1)$ of

$$
\begin{align*}
& \left(\delta_{1}+2 \beta_{0} \delta_{1}\right) r^{5}+\left(3+2 \beta_{0}+4|c| \delta_{1}-2|c| \beta_{0} \delta_{1}\right) r^{4} \\
& \quad+\left(8|c|-2|c| \beta_{0}+6 \delta_{1}-2 \beta_{0} \delta_{1}+2|c| \beta_{0} \delta_{1}-2|c|^{2} \beta_{0} \delta_{1}\right) r^{3} \\
& \quad+\left(6-2 \beta_{0}+2|c| \beta_{0}-2|c|^{2} \beta_{0}+4|c| \delta_{1}-2|c| \beta_{0} \delta_{1}\right) r^{2} \\
& \quad+\left(-2|c| \beta_{0}+\delta_{1}\right) r-1=0 . \tag{3.35}
\end{align*}
$$

3. the $S_{L}^{*}-$ radius is the smallest root $r_{2} \in(0,1)$ of

$$
\begin{aligned}
& \left(\delta_{1}+\sqrt{2} \delta_{1}-\beta_{0} \delta_{1}\right) r^{5}+\left(2+\sqrt{2}-\beta_{0}+3 q \delta_{1}+2 \sqrt{2}|c| \delta_{1}-|c| \beta_{0} \delta_{1}\right) r^{4} \\
& \quad+\left(5|c|+2 \sqrt{2}|c|-|c| \beta_{0}+3 \delta_{1}+2|c|^{2} \delta_{1}-\beta_{0} \delta_{1}-|c| \beta_{0} \delta_{1}-|c|^{2} \beta_{0} \delta_{1}\right) r^{3} \\
& \quad+\left(3+2|c|^{2}-\beta_{0}-|c| \beta_{0}-|c|^{2} \beta_{0}+5|c| \delta_{1}-2 \sqrt{2}|c| \delta_{1}-|c| \beta_{0} \delta_{1}\right) r^{2}
\end{aligned}
$$

$$
\begin{equation*}
+\left(3|c|-2 \sqrt{2}|c|-|c| \beta_{0}+2 \delta_{1}-\sqrt{2} \delta_{1}\right) r-\sqrt{2}+1=0 \tag{3.36}
\end{equation*}
$$

4. the $\mathcal{M}(\beta)$-radius is the smallest root $r_{3} \in(0,1)$ of

$$
\begin{aligned}
& \left(\delta_{1}+\beta \delta_{1}-\beta_{0} \delta_{1}\right) r^{5}+\left(2+\beta-\beta_{0}+3|c| \delta_{1}+2 \beta|c| \delta_{1}-|c| \beta_{0} \delta_{1}\right) r^{4} \\
& \quad+\left(5|c|+2 \beta|c|-|c| \beta_{0}+3 \delta_{1}+2|c|^{2} \delta_{1}-\beta_{0} \delta_{1}-|c| \beta_{0} \delta_{1}-|c|^{2} \beta_{0} \delta_{1}\right) r^{3} \\
& \quad+\left(3+2|c|^{2}-\beta_{0}-|c| \beta_{0}-|c|^{2} \beta_{0}+5|c| \delta_{1}-2 b|c| \delta_{1}-|c| \beta_{0} \delta_{1}\right) r^{2}
\end{aligned}
$$

$$
\begin{equation*}
+\left(|c|-2 \beta|c|-|c| \beta_{0}+2 \delta_{1}-\beta \delta_{1}\right) r-\beta+1=0 \tag{3.37}
\end{equation*}
$$

Proof. Define the functions h and p by $h(z)=g(z) / f(z)$, and $p(z)=z g^{\prime}(z) / g(z)$. Then

$$
h(z)=1+(c-2 b) z+\cdots \text { and } p(z)=1+c z+\cdots .
$$

Since $|f(z) / g(z)-1|<1$ if and only if $\operatorname{Re}(g(z) / f(z))>1 / 2$, we have $h \in$ $\mathcal{P}_{(c-2 b) / 2}(1 / 2)$. An application of Lemma 2.1 to the function $h(z)$, gives

$$
\begin{equation*}
\left|\frac{z h^{\prime}(z)}{h(z)}\right| \leq \frac{\left(\delta_{1} r^{2}+2 r+\delta_{1}\right) r}{\left(\delta_{1} r+1\right)\left(1-r^{2}\right)} \tag{3.38}
\end{equation*}
$$

where $\delta_{1}:=|c-2 b|$. Since $g(z)=z+c z^{2}+\cdots \in \mathcal{K}_{c}$, it follows from Lemma that

$$
\operatorname{Re}\left(\frac{z g^{\prime}(z)}{g(z)}\right)>\alpha_{0}
$$

where α_{0} is the smallest positive root of the equation $2 \alpha^{3}-|c| \alpha^{2}-4 \alpha+2=0$ in the interval $[1 / 2,2 / 3]$. Thus $\operatorname{Re}(p(z))>\alpha_{0}$.
(1) An application of Lemma with $\alpha=\alpha_{0}$, gives

$$
\begin{equation*}
\left|p(z)-C_{c}\right| \leq D_{c} \tag{3.39}
\end{equation*}
$$

where
$C_{c}=\frac{(1+|c| r)^{2}-\beta_{0}(|c|+r)^{2} r^{2}}{\left(1+2|c| r+r^{2}\right)\left(1-r^{2}\right)}, \quad D_{c}=\frac{\left(1-\beta_{0}\right)(|c|+r)(1+|c| r) r}{\left(1+2|c| r+r^{2}\right)\left(1-r^{2}\right)}$ and $\beta_{0}=2 \alpha_{0}-1$.
Since $h(z)=g(z) / f(z)$ and $p(z)=z g^{\prime}(z) / g(z)$, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-C_{c}\right| \leq\left|p(z)-C_{c}\right|+\left|\frac{z h^{\prime}(z)}{h(z)}\right| . \tag{3.40}
\end{equation*}
$$

From (3.39), (3.38) and (3.40), we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-C_{c}\right| \leq D_{c}+\frac{\left(\delta_{1} r^{2}+2 r+\delta_{1}\right) r}{\left(\delta_{1} r+1\right)\left(1-r^{2}\right)} \tag{3.41}
\end{equation*}
$$

Clearly $f \in \mathcal{S}^{*}(\lambda)$, provided that

$$
\left.\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq C_{c}-D_{c}-\frac{\left(\delta_{1} r^{2}+2 r+\delta_{1}\right) r}{\left(\delta_{1} r+1\right)\left(1-r^{2}\right)}\right) \geq \lambda
$$

or equivalently, if the following inequality holds:

$$
\begin{aligned}
& \left(\delta_{1}+\beta_{0} \delta_{1}-\delta_{1} \lambda\right) r^{5}+\left(2+\beta_{0}+3|c| \delta_{1}+|c| \beta_{0} \delta_{1}-\lambda-2|c| \delta_{1} \lambda\right) r^{4} \\
& \quad+\left(5|c|+|c| \beta_{0}+3 \delta_{1}-\beta_{0} \delta_{1}-2|c| \lambda\right) r^{3}+\left(3-\beta_{0}+\left(\delta_{1}-\beta_{0} \delta_{1}+2 \delta_{1} \lambda\right)|c|\right) r^{2} \\
& \quad+\left(-|c|-|c| \beta_{0}+2|c| \lambda+\delta_{1} \lambda\right) r-1+\lambda \leq 0 .
\end{aligned}
$$

Thus, the $\mathcal{S}^{*}(\lambda)$-radius of the class $\mathcal{F}_{b, c}^{5}$ is the smallest positive root $r_{0} \in(0,1)$ of (3.34).
(2) In view of Lemma 2.6, the disk given in (3.41) lies inside the parabolic region given by $\Omega:=\{w:|w-1|<\operatorname{Re} w\}$ provided

$$
\left.D_{c}+\frac{\left(\delta_{1} r^{2}+2 r+\delta_{1}\right) r}{\left(\delta_{1} r+1\right)\left(1-r^{2}\right)}\right) \leq C_{c}-1 / 2
$$

or equivalently, if the following inequality holds:

$$
\begin{aligned}
& \left(\delta_{1}+2 \beta_{0} \delta_{1}\right) r^{5}+\left(3+2 \beta_{0}+4|c| \delta_{1}-2|c| \beta_{0} \delta_{1}\right) r^{4} \\
& \quad+\left(8|c|-2|c| \beta_{0}+6 \delta_{1}-2 \beta_{0} \delta_{1}+2|c| \beta_{0} \delta_{1}-2|c|^{2} \beta_{0} \delta_{1}\right) r^{3} \\
& \quad+\left(6-2 \beta_{0}+2|c| \beta_{0}-2|c|^{2} \beta_{0}+4|c| \delta_{1}-2|c| \beta_{0} \delta_{1}\right) r^{2}+\left(\delta_{1}-2|c| \beta_{0}\right) r-1 \leq 0
\end{aligned}
$$

Hence the $\mathcal{M}(\beta)$-radius of the class $\mathcal{F}_{b, c}^{5}$ is the smallest positive root $r_{1} \in(0,1)$ of (3.35).
(3) From Lemma 2.5, the function f satisfies $\left|\left(z f^{\prime}(z) / f(z)\right)^{2}-1\right|<1$, in $|z|<r$, if the following inequality holds:

$$
\left.D_{c}+\frac{\left(\delta_{1} r^{2}+2 r+\delta_{1}\right) r}{\left(\delta_{1} r+1\right)\left(1-r^{2}\right)}\right) \leq \sqrt{2}-C_{c}
$$

or equivalently, if the following inequality holds:

$$
\begin{aligned}
& \left(\delta_{1}+\sqrt{2} \delta_{1}-\beta_{0} \delta_{1}\right) r^{5}+\left(2+\sqrt{2}-\beta_{0}+3 q \delta_{1}+2 \sqrt{2}|c| \delta_{1}-|c| \beta_{0} \delta_{1}\right) r^{4} \\
& \quad+\left(5|c|+2 \sqrt{2}|c|-|c| \beta_{0}+3 \delta_{1}+2|c|^{2} \delta_{1}-\beta_{0} \delta_{1}-|c| \beta_{0} \delta_{1}-|c|^{2} \beta_{0} \delta_{1}\right) r^{3} \\
& \quad+\left(3+2|c|^{2}-\beta_{0}-|c| \beta_{0}-|c|^{2} \beta_{0}+5|c| \delta_{1}-2 \sqrt{2}|c| \delta_{1}-|c| \beta_{0} \delta_{1}\right) r^{2} \\
& \quad+\left(3|c|-2 \sqrt{2}|c|-|c| \beta_{0}+2 \delta_{1}-\sqrt{2} \delta_{1}\right) r-\sqrt{2}+1 \leq 0 .
\end{aligned}
$$

Therefore the \mathcal{S}_{L}^{*}-radius of the class $\mathcal{F}_{b, c}^{5}$ is the smallest positive root $r_{2} \in(0,1)$ of (3.36).
(4) From (3.41), we have

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \leq C_{c}+D_{c}+\frac{\left(\delta_{1} r^{2}+2 r+\delta_{1}\right) r}{\left(\delta_{1} r+1\right)\left(1-r^{2}\right)} \leq \beta
$$

if the following inequality holds:

$$
\begin{aligned}
& \left(\delta_{1}+\beta \delta_{1}-\beta_{0} \delta_{1}\right) r^{5}+\left(2+\beta-\beta_{0}+3|c| \delta_{1}+2 \beta|c| \delta_{1}-|c| \beta_{0} \delta_{1}\right) r^{4} \\
& \quad+\left(5|c|+2 \beta|c|-|c| \beta_{0}+3 \delta_{1}+2|c|^{2} \delta_{1}-\beta_{0} \delta_{1}-|c| \beta_{0} \delta_{1}-|c|^{2} \beta_{0} \delta_{1}\right) r^{3} \\
& \quad+\left(3+2|c|^{2}-\beta_{0}-|c| \beta_{0}-|c|^{2} \beta_{0}+5|c| \delta_{1}-2 b|c| \delta_{1}-|c| \beta_{0} \delta_{1}\right) r^{2} \\
& \quad+\left(|c|-2 \beta|c|-|c| \beta_{0}+2 \delta_{1}-\beta \delta_{1}\right) r-\beta+1=0 .
\end{aligned}
$$

Therefore, the $\mathcal{M}(\beta)$-radius of the class $\mathcal{F}_{b, c}^{5}$ is the smallest positive root $r_{3} \in(0,1)$ of (3.37).

Remark 3.15. Note that for $b=1=c$, Theorem 3.14 reduces to the result [4, Theorem 2.5] of Ali et al.

Acknowledgements. The work presented here was supported in parts by a research university grant from Universiti Sains Malaysia, and a SRF from Delhi Technological University.

References

[1] R. M. Ali and V. Ravichandran, Uniformly convex and uniformly starlike functions, Math. Newsletter, 21(1)(2011), 16-30.
[2] R. M. Ali, N. E. Cho, N. K. Jain and V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat, 26(3) (2012), 553-561.
[3] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 218(2012), no. 11, 6557-6565.
[4] R. M. Ali, N. Jain and V. Ravichandran, On the radius constants for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 36(2) (2013), no. 1, 23-38.
[5] R. M. Ali, S. Nagpal and V. Ravichandran, Second-order differential subordination for analytic functions with fixed initial coefficient, Bull. Malays. Math. Sci. Soc. (2), 34(2011), no. 3, 611-629.
[6] M. Finkelstein, Growth estimates of convex functions, Proc. Amer. Math. Soc., 18(1967), 412-418.
[7] T. H. Gronwall, On the distortion in conformal mapping when the second coefficient in the mapping function has an assigned value, Nat. Acad. Proc., 6(1920), 300-302.
[8] R. M. Goel, The radius of convexity and starlikeness for certain classes of analytic functions with fixed second coefficients, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 25(1971), 33-39(1973).
[9] S. K. Lee, V. Ravichandran and S. Supramaniam, Applications of differential subordination for functions with fixed second coefficient to geometric function theory, Tamsui Oxford J. Math. Sci., 29(2013), no. 2, 267-284.
[10] C. P. McCarty, Two radius of convexity problems, Proc. Amer. Math. Soc., 42(1974), 153-160.
[11] C. P. McCarty, Functions with real part greater than α, Proc. Amer. Math. Soc., 35(1972), 211-216.
[12] R. Mendiratta and V. Ravichandran, Livingston problem for close-to-convex functions with fixed second coefficient, Jñānābha, 43(2013), 107-122.
[13] R. Mendiratta, S. Nagpal and V. Ravichandran, Second-order differential superordination for analytic functions with fixed initial coefficient, Southeast Asian Bull. Math., 39(2015), no. 6, 851-864 .
[14] R. Mendiratta, S. Nagpal and V. Ravichandran, Radii of starlikeness and convexity for analytic functions with fixed second coefficient satisfying certain coefficient inequalities, Kyungpook Math. J., 55(2015), no. 2, 395-410.
[15] S. Nagpal and V. Ravichandran, Applications of the theory of differential subordination for functions with fixed initial coefficient to univalent functions, Ann. Polon. Math., 105(2012), no. 3, 225-238.
[16] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
[17] S. Owa and H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 3(2002), no. 3, Article 42, 13 pp.
[18] K. S. Padmanabhan and M. S. Ganesan, A radius of convexity problem, Bull. Austral. Math. Soc., 28(1983), no. 3, 433-439.
[19] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196.
[20] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, in Computational Methods and Function Theory 1994 (Penang), 319-324, Ser. Approx. Decompos., 5 World Sci. Publ., River Edge, NJ.
[21] V. Singh and R. M. Goel, On radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan, 23(1971), 323-339.
[22] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996), 101-105.
[23] P. D. Tuan and V. V. Anh, Radii of convexity of two classes of regular functions, Bull. Austral. Math. Soc., 21(1980), no. 1, 29-41.
[24] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25(1994), no. 3, 225-230.

