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Abstract. Let M be a matroid. We study the expansions of M mainly to see how the

combinatorial properties of M and its expansions are related to each other. It is shown

that M is a graphic, binary or a transversal matroid if and only if an arbitrary expansion

of M has the same property. Then we introduce a new functor, called contraction, which

acts in contrast to expansion functor. As a main result of paper, we prove that a matroid

M satisfies White’s conjecture if and only if an arbitrary expansion of M does. It follows

that it suffices to focus on the contraction of a given matroid for checking whether the

matroid satisfies White’s conjecture. Finally, some classes of matroids satisfying White’s

conjecture are presented.

1. Introduction

Matroids are abstract combinatorial structures that capture the notion of inde-
pendence that is common to a surprisingly large number of mathematical entities.
They were introduced by Whitney in 1935 as a common generalization of indepen-
dence in linear algebra and independence in graph theory [21]. Matroid theory is one
of the most fascinating research areas in combinatorics. It was linked to projective
geometry by Mac Lane [12], and have found a great many applications in several
branches of mathematics [20]. In this regard studying the structural properties of
matroids from different point views have been considered by many researchers. Also
classifying matroids with a desired property or making modifications to a matroid
so that it satisfies a special property is the subject of many research papers, see for
example [1, 7, 9, 11, 15, 17, 20].

The notion of expansion is a known notion appeared in different terminologies
as parallelization or duplication in combinatorics [4, 5, 13, 16]. In [15], the authors
studied behaviors of expansion functor on some algebraic structures associated to
discrete polymatroids. It was shown that a nonempty finite set is a discrete poly-

Received March 25, 2016; revised April 11, 2017; accepted May 26, 2017.
2010 Mathematics Subject Classification: Primary 05B35; Secondary 52B40.
Key words and phrases: expansion functor, contraction functor, White’s conjecture.

371



372 Rahim Rahmati-Asghar

matroid if and only if its an arbitrary expansion is a discrete polymatroid (c.f. [15,
Theorem 1.2.]). The discrete polymatroid is a multiset analogue of the matroid.
Moreover, there are several classes of matroids so that the study of each of them
is interesting in its own right. This motivates to focus on the behaviors of the
expansion functor on some classes of matroids and to investigate some structural
properties of them in this paper. Our goal in this paper is to investigate more
relations between the exchange property of bases of a matroid and those of its
expansions. It turns out that the exchange properties of bases of a matroid are pre-
served under taking the expansion functor and so this construction is a very good
tool to make new matroids with a desired property. Moreover, by taking another
functor, contraction functor, which is the opposite to the expansion functor we will
able to construct a new matroid, with possibly smaller ground set, from a given
matroid and check a desired property on new matroid instead of primary one.

White in 1980 proposed a conjecture about the bases of a matroid [20]. This
conjecture has received much attention in recent years and has some algebraic and
combinatorial variants, all of which are open problems. Up to now, several math-
ematicians confirmed only some variants of this conjecture for special classes of
matroids (see for example [1, 2, 7, 9, 11, 15, 17, 18]).

White [20] defined three classes TE(1), TE(2) and TE(3) of matroids and con-
jectured that TE(1) = TE(2) = TE(3) =the class of all matroids.

We investigate the effect of the expansion functor on the exchange property for
bases of matroids and conclude that White’s conjecture is preserved under taking
the expansion or contraction functor.

The paper is organized as follows. In Section 1, we review some preliminaries
which are needed in the sequel. In Section 2, we investigate the expansion of some
classes of matroids. We show that a matroid is graphic, binary or transversal if
and only if its an arbitrary expansion has such a property (see Theorems , 3.4
and ). Also, we prove that the expansion of an uniform matroid is a partition
matroid and, conversely, every partition matroid is an expansion of an uniform
matroid (see Theorem 3.9). In Section 3, we introduce the contraction functor
which acts in contrast to expansion functor. The last section is devoted to the
study of unique exchange property. After recalling some notions and notations
from [20], we formulate White’s conjecture [20, Conjecture 12]. As one of the main
results, we show that a matroid M satisfies White’s conjecture if and only if an
arbitrary expansion of M does (see Theorem 5.1). This concludes that M satisfies
White’s conjecture if and only if its contraction does (see Corollary 5.6). On the
other hand, since the class of contracted matroids is very smaller than the class of
all matroids, it follows from Corollary 5.6 that to test White’s conjecture for a given
class of matroids it suffices to turn our attention to their contractions. Finally, we
give some classes of matroids which satisfy White’s conjecture.

2. Preliminaries

A matroid M is a pair (EM ,BM ) consisting of a finite set EM and a non-empty
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family BM of subsets of EM such that no set in BM properly contains another set
in BM and, moreover, BM satisfies the following exchange property :

for every B1, B2 ∈ BM and x ∈ B1\B2 there exists y ∈ B2\B1, such that
(B1\x) ∪ y ∈ BM .

EM and BM are, respectively, called the ground set and the basis set of M . The
background from matroid theory which we use may be obtained from [14] or [19].

Recall from [15] the concept of expansion functor on a family of subsets of
[n] = {x1, . . . , xn}. Let α = (k1, . . . , kn) ∈ Nn. For A = {xi1 , . . . , xir} ⊆ [n], the
expansion of A is defined

Aα = {xi11, . . . , xi1ki1 , . . . , xir1, . . . , xirkir }.

Let A be a family of subsets of [n] and A = {xi1 , . . . , xir} ∈ A. Set [n]α = {xij :
1 ≤ i ≤ n, 1 ≤ j ≤ ki}. The expansion of the singleton family {A} with respect to
α is denoted by {A}α and it is a family of subsets of [n]α defined as follows:

{A}α = {{xi1j1 , . . . , xirjr} : 1 ≤ jl ≤ kil for all l}.

Also, the expansion of A with respect to α is denoted by Aα and it is defined

Aα =
⋃
A∈A

{A}α.

Let 2[n] denote the set of all subsets of [n] and let α ∈ Nn. We define the map
π : 2[n]

α → 2[n] by setting π({xi1j1 , . . . , xirjr}) = {xi1 , . . . , xir}.
The following theorem is a direct consequence of [15, Theorem 1.2]:

Theorem 2.1. Let M be a nonempty family of subsets of [n] and let α ∈ Nn. Then
M is a matroid if and only if Mα is.

The restriction of a matroid (EM ,BM ) to X ⊆ EM is denoted by MX and it is
a matroid with the ground set EMX

= EM ∩X and the basis set

BMX
= {B ∩X : B ∈ BM}.

3. The Expansion of Some Classes of Matroids

Let G = (V (G), E(G)) be an undirected graph (with possibly loops or parallel
edges). A spanning subgraph of a graph G is a subgraph whose vertex set is the
entire vertex set of G. If this spanning subgraph is a tree, it is called a spanning
tree of the graph.

Let E = E(G) and B = {B ⊂ E(G) : B is a spanning tree of G}. Then
M = (E,B) is a matroid called a graphic matroid. The graphic matroid associated
with the graph G is denoted by M(G).
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Theorem 3.1. Let M be a matroid on [n] and α = (k1, . . . , kn) ∈ Nn. Then M is
graphic if and only if Mα is graphic.

We need some notations and an auxiliary lemma:

For any 1 ≤ i ≤ n, let εi = (a1, . . . , an) ∈ Nn be defined as aj =

{
0 if j 6= i
1 if j = i.

Set 1 = (1, 1, . . . , 1) ∈ Nn.

Lemma 3.2. Let A be a family of subsets of [n], β = (k1, . . . , kn) ∈ Nn and
α = β + δi. Then (Aβ)1+εiki ∼= Aα.

Proof. Note that

[n]α = {x11, . . . , x1k1 , . . . , xi1, . . . , xiki , xi(ki+1), . . . , xn1, . . . , xnkn}

and

([n]β)1+εiki = {x111, . . . , x1k11, . . . , xi11, . . . , xiki1, xiki2, . . . , xn11, . . . , xnkn1}.

Define ϕ : ([n]β)1+εiki → [n]α given by

ϕ(xrst) =

{
xrs t = 1
xi(ki+1) t = 2.

Then ϕ induces the bijection

θ : (Aβ)1+εiki → Aα.
F 7→ ϕ(F )

Now we prove Theorem 3.1:

Proof. Let G be a graph with E(G) = {x1, . . . , xn} and M ∼= M(G). We use
induction on α.

First, suppose that k1 = 2 and ki = 1 for all i > 1. Let G′ be a graph with the
vertex set V (G) and the edge set E(G′) = {xi1, x12 : i = 1, . . . , n} where xi1 = xi
for all i and x11 and e12 are parallel. It is easy to check that M(G)α ∼= M(G′).

Now, suppose that k1 > 1 and β ∈ Nn with β(i) = ki if 2 ≤ i ≤ n and
β(1) = k1 − 1. Assume that M(G)β ∼= M(H) is graphic. Then it follows from
induction hypothesis and Lemma 3.2 that M(G)α ∼= (M(G)β)ε1 ∼= M(G′) where
G′ is obtained from H by adding a parallel edge.

Conversely, suppose Mα is graphic and Mα ∼= M(G′). Set X = {xi1 : 1 ≤ i ≤
n}. Then (Mα)X ∼= M is graphic by [8, page 842].
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Figure 1: The graphs G and G′

Example 3.3. Consider the matroid M on [6] with basis set

BM = {{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x1, x3, x5},

{x1, x4, x5}, {x2, x3, x4}, {x2, x3, x5}, {x2, x4, x5}}.

M is a graphic matroid associated with the graph G shown in Figure 1. Let α =
(1, 1, 1, 1, 2, 2) ∈ N6. Then Mα is a graphic matroid and Mα is associated with G′

(see Figure 1), obtained from G by adding parallel edges to x5 and x6.

A subset of the ground set of a matroid M that is contained in no bases of M
is called dependent. A circuit in M is a minimal dependent subset (with respect to
inclusion) of EM and the set of circuits of M is denoted by C(M). A matroid M
is binary if and only if for every pair of circuits of M , their symmetric difference
contains another circuit. See [14, Theorem 9.1.2] for other equivalent definitions of
binary matroids.

Theorem 3.4. Let M be a matroid on [n] and α ∈ Nn. Then M is binary if and
only if Mα is.

Proof. Let M be binary and let C ′1, C
′
2 ∈ C(Mα). If π(C ′1) = π(C ′2) then there

exist xij ∈ C ′1\C ′2 and xij′ ∈ C ′2\C ′1 with j 6= j′. Set C ′ = {xij , xij′}. Then
C ′ ⊂ C ′14C ′2 and C ′ ∈ C(Mα), and hence the assertion is completed. So suppose
that π(C ′1) 6= π(C ′2).

If |π(C ′1)| = |C ′1| and |π(C ′2)| = |C2| then since π(C ′1), π(C ′2) ∈ C(M) there
exists C ∈ C(M) such that B ⊆ π(C ′1)4π(C ′2). Since π(C ′1)4π(C ′2) ⊆ π(C ′14C ′2)
we have B ⊆ π(C ′14C ′2) and so it follows that C ′ ⊆ C ′14C ′2 for some C ′ ∈ C(Mα)
with π(C ′) = C.

Consider |π(C ′1)| 6= |C ′1| or |π(C ′2)| 6= |C ′2|. Let, for example, |π(C ′1)| 6= |C ′1|.
Then {xil, xim} ⊂ C ′1 for some l,m. Since {xil, xim} ∈ C(Mα), thus it should be
C ′1 = {xil, xim}. Consider the following cases:

• |π(C ′2)| 6= |C ′2|: Then C ′2 = {xjl′ , xjm′} for some j, l′ and m′. Since π(C ′1) 6=
π(C ′2) we have i 6= j. Set C ′ = {xil, xim}.

• |π(C ′2)| = |C ′2|: Then C ′2 = {xi1j1 , . . . , xirjr} and C ′14C ′2 = {xi1j1 , . . . , xirjr , xil, xim}
or C ′14C ′2 = {xi1j1 , . . . , xir−1jr−1

, xil} where xirjr = xim. At the first case,
set C ′ = {xil, xim} and at the second one, set C ′ = {xi1j1 , . . . , xir−1jr−1

, xil}.
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Thus C ′ ∈ C(Mα) and C ′ ⊂ C ′14C ′2. Therefore Mα is binary.
Conversely, suppose that Mα is binary and C1, C2 ∈ C(M). Let C1 =

{xi1 , . . . , xir} and C2 = {xj1 , . . . , xjs}. Set C ′1 = {xi11, . . . , xir1} and C ′2 =
{xj11, . . . , xjs1}. Then C ′1, C

′
2 ∈ C(Mα) and so there exists C ′ ∈ C(Mα) with

C ′ ⊂ C ′14C ′2. It follows that π(C ′) ∈ C(M) and π(C ′) ⊂ C14C2. Therefore M is
binary.

We recall from [14, page 46.] the definition of a transversal matroid. Let
S ⊂ [n]. A set system (S,A) is a set S along with a multiset A = (Aj : j ∈ J) of
(not necessarily distinct) subsets of S. If J = {1, . . . ,m} then we may denote A by
A = (A1, . . . , Am). A transversal of A = (Aj : j ∈ J) is a subset T of S for which
there is a bijection ϕ : J → T with ϕ(j) = Aj for all j ∈ J .

Theorem 3.5.([6]) A finite set system (S, (Aj : j ∈ J)) has a transversal if and
only if, for all K ⊂ J ,

|
⋃
Ai| ≥ |K|.

If X ⊂ S, then X is a partial transversal of A = (Aj : j ∈ J) if, for some subset
K of J , X is a transversal of A. The partial transversals of a A are the independent
sets of a matroid. We call such a matroid a transversal matroid and denote it by
M [A]. A is called a presentation of M [A].

Thoerem 3.6.([3]) Let M be a transversal matroid on [n]. Then so is MX for each
X ⊂ [n]. If (A1, . . . , Am) is a presentation of M , then (A1 ∩X, . . . , Am ∩X) is a
presentation of MX .

If A = (Aj : j ∈ J) is a family of subsets of S ⊂ [n] then the bipartite graph
associated with A, denoted by G[A], has the vertex set S ∪ {Aj : j ∈ J} and the
edge set {xiAj : j ∈ J and xi ∈ Aj}.

A matching in a graph G is the set of edges in G no two of which have a common
endpoint. A subset X of S is a partial transversal of A if and only if there is a
matching in G[A] which every edge has one endpoint in X.

Theorem 3.7. Let M be a matroid on [n] and let α ∈ Nn. Then M is transversal
if and only if Mα is.

Proof. “Only if part”: Let M be a transversal matroid with M ∼= M [A] where
A = (A1, A2, . . . , Am) and Ai ⊂ [n]. Set Aα = (Aα1 , A

α
2 , . . . , A

α
m). We claim that

Aα is a presentation of Mα. We associate to Aj and Aαj , respectively, the vertices
yj and y′j .

Let B′ ∈ BM [A]α . We may assume that B′ = {x1i1 , . . . , xrir}. So there exists
the maximal matching {x1yj1 , . . . , xryjr} in the bipartite graph G[A] with the par-
tition [n]∪̇{y1, . . . , ym}. It is clear that B′′ = {x1i1y′j1 , . . . , xriry

′
jr
} is a matching in

G[Aα]. Suppose, on the contrary, that B′′ is not maximal. So for some matching
C in G[Aα] we have B′′ ⊂ C. Let xsty

′
l ∈ C\B′′. Since {x1yj1 , . . . , xryjr} is max-

imal, we have s ∈ {1, . . . , r}. Moreover, it is clear that l 6∈ {j1, . . . , jr}. Let s = 1
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Figure 2: The bipartite graphs G[A] and G[Aα]

and let X = {x1, . . . , xr}. By Theorem 3.6, MX is transversal with presentation
(A1 ∩X, . . . , Am ∩X). But | ∪k∈{j1,...,jr,l} (Ak ∩X)| = r < r + 1 = |{j1, . . . , jr, l}|.
This contradicts Theorem 3.5. Therefore B′′ is a maximal matching in G[Aα] and
so B′ ∈ BM [Aα].

In a similar argument we show that BM [Aα] ⊆ BM [A]α . Therefore M [A]α ∼=
M [Aα], as desired.

“If part”: Let Mα be transversal with the presentation B = (B1, . . . , Bm). One
may suppose that [n] := {xi1 : 1 ≤ i ≤ n}. By Theorem 3.6, (Mα)[n] is a transversal
matroid with the presentation B′ = (B1 ∩ [n], . . . , Bm ∩ [n]). Since (Mα)[n] = M ,
the assertion is completed.

Example 3.8. Let S = {x1, x2, x3, x4} ⊂ [n] and α = (k1, . . . , kn) ∈ Nn. Let
A = ({x1, x2}, {x1, x3}, {x3}). Then the matchings in G[A] are

{x1y2, x2y1}, {x1y1, x3y2}, {x2y1, x3y2}

and so
BM [A] = {{x1, x2}, {x1, x3}, {x2, x3}}.

G[A] and G[Aα] are shown in Figure 2.
A matroid on [n] of rank t ≤ n is an uniform matroid if all t-element subsets of

[n] are bases and it is denoted by Ut,n.
A partition matroid of rank t [10] is a matroid M(P) associated with a partition

P = {A1, . . . , Am} of EM(P) and the basis set

BM(P) = {U ⊂ A : |U ∩Ai| ≤ 1 for all i and |U | = t}.

Theorem 3.9. The expansion of every uniform matroid is a partition matroid.
Conversely, every partition matroid is the expansion of an uniform matroid.
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Proof. Let Ut,n be an uniform matroid on [n] of rank t and let α = (k1, . . . , kn) ∈ Nn.
Set Ai = {xi1, . . . , xiki} for all i. Then it is easy to see that Uαt,n = M(P) where
P = {A1, . . . , An}.

Conversely, let M(P) be a partition matroid of rank t with P = {A1, . . . , Am}.
Set A′i := {xi} for all i. Then M(P) ∼= Uαt,m where α = (k1, . . . , km) and ki = |Ai|
for all i.

4. The Contraction Functor

Definition 4.1. Let A be a family of subsets of [n] and let B denote the maximal
elements of A (with respect to inclusion). We define the relation “ ∼” on [n] in the
following form:

xi ∼ xj ⇐⇒ {A\xi : A ∈ B, xi ∈ A} = {A\xj : A ∈ B, xj ∈ A}.

In other words,

xi ∼ xj ⇐⇒ for all A ∈ B

{
if xi ∈ A then (A\xi) ∪ xj ∈ B

if xj ∈ A then (A\xj) ∪ xi ∈ B.

It is easily shown that ∼ is an equivalence relation. Let [m] = {y1, . . . , ym} be
the set of equivalence classes under ∼.

Let yi = {xi1, . . . , xiai}. Set α = (a1, . . . , am). For A ∈ B, define A = {yi :
yi ∩ A 6= ∅} and A a family of subsets of [m] with the set {A : A ∈ B} of maximal
elements. We call A the contraction of A by α. Clearly, every family of subsets of
[n] has an unique contraction.

A family A of subsets of [n] is called contracted if A and A coincide up to a
relabeling.

Remark 4.2. Note that the contraction functor behaves exactly the opposite to
expansion functor. Actually, if A is a family of subsets of [n] and A is the contraction
of A by α, then (A)α and A coincide up to a relabeling of [n]. Also, for every α ∈ Nn,
two families Aα and A coincide. Therefore A is a matroid if and only if (A)α is a
matroid. Equivalently, by Theorem 2.1, A is a matroid.

Remark 4.3. All of uniform matroids of rank t > 1 are contracted.

Corollary 4.4. The contraction of a partition matroid is an uniform matroid.

Proof. Let M be a partition matroid on [n]. By Theorem 3.9, M is the expansion
of an uniform matroid Ut,n with respect to some α ∈ Nn. It follows from Remarks
4.2 and 4.3 that M = Uαt,n = Ut,n = Ut,n.

In view of Theorems 3.1, 3.4, 3.7 and 3.9 we have the following:

Corollary 4.5. The contraction of a graphic (resp. binary, transversal) matroid is
graphic (resp. binary, transversal).
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5. Unique Exchange Property for Bases with a View towards White’s
Conjecture

In this section, we investigate the preservation of White’s conjecture under
taking the expansion and contraction functors. First, we recall some notions and
notations from [20].

Let M be a matroid. Two sequences of bases (A1, . . . , Am) and (B1, . . . , Bm)
are compatible if A1 ∪ . . . ∪ Am = B1 ∪ . . . ∪ Bm. Let (A1, . . . , Am) be a sequence
of bases of a matroid M and let 1 ≤ r < s ≤ m and x ∈ Ar. Set

E(x;Ar, As) = {y ∈ As : (Ar\x) ∪ y, (As\y) ∪ x ∈ BM}.

Let y ∈ E(x;Ar, As). Then we say

(A1, . . . , Ar−1, (Ar\x) ∪ y,Ar+1, . . . , As−1, (As\y) ∪ x,As+1, . . . , Am)

is obtained from (A1, . . . , Am) by a symmetric exchange. For two sequences of
bases of a matroid M , (A1, . . . , Am) ∼1

M (B1, . . . , Bm) means that (B1, . . . , Bm)
is obtained from (A1, . . . , Am) by a symmetric exchange. Also, (A1, . . . , Am) ∼2

M

(B1, . . . , Bm) implies to (B1, . . . , Bm) is obtained from (A1, . . . , Am) by a symmetric
exchange or a permutation of the order of the bases.

If U ⊂ Ar, we let

E(U ;Ar, As) = {V ⊂ As : (Ar\U) ∪ V, (As\V ) ∪ U ∈ BM}.

Let V ∈ E(U ;Ar, As). Then we say (A1, . . . , Ar−1, (Ar\U)∪V,Ar+1, . . . , As−1, (As\V )∪
U,As+1, . . . , Am) is obtained from (A1, . . . , Am) by a symmetric subset exchange.
We write (A1, . . . , Am) ∼3

M (B1, . . . , Bm) if (B1, . . . , Bm) is obtained from (A1, . . . , Am)
by a symmetric subset exchange.

For i = 1, 2, 3, set TE(i) the class of matroids with the property that for
every matroid M ∈ TE(i) and every two compatible sequences (A1, . . . , Am)
and (B1, . . . , Bm) of bases of M , there exist the sequences (Cj1, . . . , Cjm), for
j = 1, . . . , t, of bases of M such that

(A1, . . . , Am) ∼iM (C11, . . . , C1m) ∼iM . . . ∼iM (Ct1, . . . , Ctm) ∼iM (B1, . . . , Bm).

It is easy to check that TE(1) ⊆ TE(2) ⊆ TE(3). White conjectured that theses
classes are equal to the class of all matroids [20, Conjecture 12]. We will say that a
matroid M satisfies White’s conjecture if M ∈ TE(i), for all i = 1, 2, 3.

Theorem 5.1. For a matroid M on [n], α ∈ Nn and i = 1, 2, 3 we have

M ∈ TE(i)⇔Mα ∈ TE(i).

Before proving Theorem 5.1, we present some auxiliary results.

Lemma 5.2. Let M be a matroid on [n] and α ∈ Nn.
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(i) For any two compatible sequences (A1, . . . , Am) and (B1, . . . , Bm) of bases of
M , there exist two compatible sequences (A′1, . . . , A

′
m) and (B′1, . . . , B

′
m) of

bases of Mα such that π(A′i) = Ai and π(B′i) = Bi;

(ii) If (A′1, . . . , A
′
m) and (B′1, . . . , B

′
m) are two compatible sequences of bases of

Mα then (π(A′1), . . . , π(A′m)) and (π(B′1), . . . , π(B′m)) are two compatible se-
quences of bases of M .

Lemma 5.3. Let M be a matroid on [n] and let α ∈ Nn. For B′1, B
′
2 ∈ BMα , if

(B′1, B
′
2) is obtained from (A′1, A

′
2) by a symmetric subset exchange then

(i) π(B′i) = π(A′i) for i = 1, 2 or

(ii) (π(B′1), π(B′2)) is obtained from (π(A′1), π(A′2)) by a symmetric subset ex-
change.

Lemma 5.4. Let M be a matroid on [n] and let α ∈ Nn. Suppose that (B1, B2) is
obtained from (A1, A2) by a symmetric subset exchange. Let (A′1, A

′
2) and (B′1, B

′
2)

be two compatible sequences of bases of Mα with π(A′i) = Ai, π(B′i) = Bi. Then
(B′1, B

′
2) is obtained from (A′1, A

′
2) by a symmetric subset exchange.

Now we prove Theorem 5.1 in three parts:

Membership in TE(3):

Assume that M ∈ TE(3) and let (A′1, . . . , A
′
m) and (B′1, . . . , B

′
m) be two com-

patible sequences of bases of Mα. Let Ai = π(A′i) and Bi = π(B′i) for i = 1, . . . ,m.
By Lemma 5.2 (ii), (A1, . . . , Am) and (B1, . . . , Bm) are compatible and, by the
assumption, (B1, . . . , Bm) is obtained from (A1, . . . , Am) by a composition of sym-
metric subset exchanges. It follows from Lemma 5.4 that (B′1, . . . , B

′
m) is obtained

from (A′1, . . . , A
′
m) by a composition of symmetric subset exchanges. Therefore

Mα ∈ TE(3).

Similarly, the converse direction follows from Lemmas 5.2 (i) and 5.3.

Membership in TE(2):

Let M ∈ TE(2). Let (A′1, . . . , A
′
m) and (B′1, . . . , B

′
m) be two compatible se-

quences of Mα. By Lemma 5.2 (ii), (π(A′1), . . . , π(A′m)) and (π(B′1), . . . , π(B′m)) are
two compatible sequences of bases ofM and so, by the assumption, (π(B′1), . . . , π(B′m))
is obtained from (π(A′1), . . . , π(A′m)) by a composition of symmetric exchanges and
permutations of the order of the bases. It follows from Lemma 5.4 that (B′1, . . . , B

′
m)

is obtained from (A′1, . . . , A
′
m) by a composition of symmetric exchanges and per-

mutations of the order of the bases.

The converse direction obtains in a similar argument by using Lemmas 5.2 (i)
and 5.3.

Membership in TE(1):
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Lemma 5.5.([11]) Let M be a matroid. Then M ∈ TE(1) if and only if M ∈ TE(2)
and any pair (A2, A1) of bases of M is obtained from (A1, A2) by a composition of
symmetric exchanges.

Since M ∈ TE(2) if and only if Mα ∈ TE(2), it suffices to show that any pair
(A2, A1) of bases of M is obtained from (A1, A2) by a composition of symmetric
exchanges if and only if any pair of bases of Mα has this property.

Suppose that any pair (A2, A1) of bases of M is obtained from (A1, A2) by a
composition of symmetric exchanges. Consider a pair (B′2, B

′
1) of bases of Mα.

Let Bi = π(B′i). By the assumption, (B2, B1) is obtained from (B1, B2) by a
composition of symmetric exchanges. Therefore

(B1, B2) ∼1
M (C11, C12) ∼1

M . . . ∼1
M (Ct1, Ct2) ∼1

M (B2, B1).

By Lemma 5.2 (i), one can choose the bases C ′ij ∈ BMα with π(C ′ij) = Cij such
that (B′1, B

′
2), (C ′11, C

′
12), . . . , (C ′t1, C

′
t2) are pairwise compatible. It follows from

Lemma 5.4 that (B′2, B
′
1) is obtained from (B′1, B

′
2) by a composition of symmetric

exchanges.
The converse follows from Lemmas 5.2 (ii) and 5.3 in a similar argument.

Corollary 5.6. Let M be a matroid on [n] and let α ∈ Nn. Then M satisfies
White’s conjecture if and only if the contraction of M does.

Remark 5.7. Note that the class of contracted matroids is very smaller than the
class of all matroids. It follows from Corollary 5.6 that to test White’s conjecture
for a class of matroids it suffices to turn our attention to their contractions.

Corollary 5.8. Every partition matroid satisfies White’s conjecture.

Proof. Let M be a partition matroid. By Corollary 4.4, the contraction of M is
an uniform matroid. In view of Corollary 5.6, if we show that Ut,n ∈ TE(1) then
the assertion is completed. It was shown in [18] that the toric ideal of any uniform
matroid is generated by quadratic binomials corresponding to symmetric exchanges
and this is an algebraic meaning of the property TE(2). Hence Ut,n ∈ TE(2).
Now suppose that (A2, A1) is a pair of bases of Ut,n. Let A1 = {xi1 , . . . , xit} and
A2 = {xj1 , . . . , xjt}. Let is+1 = js+1, . . . , it = jt and ip 6= jq for p, q ≤ s. Then

(A1, A2) ∼1
Ut,n

({xj1 , xi2 , . . . , xit}, {xi1 , xj2 , . . . , xjt}) ∼1
Ut,n

. . .

∼1
Ut,n

({xj1 , xj2 , . . . , xjs−1
, xis , . . . , xit}, {xi1 , xj2 , . . . , xis−1

, xjs , . . . , xjt}) ∼1
Ut,n

(A2, A1).

It follows from Lemma 5.5 that M ∈ TE(1), as desired.

Let M1 and M2 be matroids on disjoint ground sets. The direct sum of M1

and M2 is denoted by M1 ⊕M2 and it is a matroid, by [14, Proposition 4.2.12], on
EM1 ∪ EM2 with the basis set

BM1⊕M2
= {B1 ∪B2 : B1 ∈ BM1

, B2 ∈ BM2
}.
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Lemma 5.9. Let M1 and M2 be matroids on disjoint ground sets. If M1 and M2

satisfy White’s conjecture then M1 ⊕M2 does, too.
The proofs of above lemma is easy and we leave them to the reader.

Remark 5.10. (i) Let M be a matroid on [n] = {x1, . . . , xn} and let z be disjoint
from xi’s. Then M satisfies White’s conjecture if and only if the matroid N with
the basis set {A ∪ z : A ∈ BM} does.

(ii) Let M be a matroid on [n]. Consider {zij : i = 1, . . . , r, j = 1, . . . , s} a set
disjoint from [n]. Let t ≤ r, s. Then the set

B = {A ∪ (∪tk=1zikjk) : A ∈ BM , 1 ≤ i1 < . . . < it ≤ r, jk ∈ [s]}

is the basis set of a matroid N . In fact, N = M ⊕M(P) where P = {A1, . . . , Ar}
and Ai = {zi1, . . . , zis} for all i. Especially, if M satisfies White’s conjecture then
it follows from Lemma 5.9 and Corollary 5.8 that N satisfies White’s conjecture,
too.

Combining Theorem 3.4 with Theorem 5.1 we obtain

Corollary 5.11. A binary matroid satisfies White’s conjecture if and only if its
contraction does.

Example 5.12. Consider the matroid M on [7] with the basis set

BM = {{x1, x2, x3, x5}, {x1, x2, x3, x7}, {x1, x2, x5, x6}, {x1, x2, x5, x7}, {x1, x2, x6, x7},

{x1, x3, x4, x5}, {x1, x3, x4, x7}, {x1, x4, x5, x6}, {x1, x4, x5, x7}, {x1, x4, x6, x7},

{x2, x3, x5, x7}, {x2, x5, x6, x7}, {x3, x4, x5, x7}, {x4, x5, x6, x7}}.

It is easy to check that M is binary. To see that M satisfies White’s conjecture, we
first contract M . The contraction of M is a binary matroid on {x1, x2, x3, x5, x7}
with the basis set

BM = {{x1, x2, x3, x5}, {x1, x2, x3, x7}, {x1, x2, x5, x7}, {x2, x3, x5, x7}}.

On the other hand, BM can be obtained by adding x2 to all bases of the uniform
matroid U3,4 with the ground set {x1, x3, x5, x7}. It follows from Remark 5.10(i)
that M satisfies White’s conjecture and so M satisfies White’s conjecture, too.
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