GLOBAL SOLUTIONS FOR THE $\bar{\partial}$-PROBLEM ON NON PSEUDOCONVEX DOMAINS IN STEIN MANIFOLDS

SAYEd SabER

Abstract

In this paper, we prove basic a priori estimate for the $\bar{\partial}$ Neumann problem on an annulus between two pseudoconvex submanifolds of a Stein manifold. As a corollary of the result, we obtain the global regularity for the $\bar{\partial}$-problem on the annulus. This is a manifold version of the previous results on pseudoconvex domains.

1. Introduction

Let X be a Stein manifold of dimension $n \geq 3$. Let Ω_{1} and Ω_{2} be two open pseudoconvex submanifolds with smooth boundary in X such that $\bar{\Omega}_{2} \Subset$ $\Omega_{1} \Subset X$. Assume that $\Omega=\Omega_{1} \backslash \bar{\Omega}_{2}$. In this paper, we prove the basic a priori estimate for the $\bar{\partial}$-Neumann problem on Ω. Also, we study the global boundary regularity of the $\bar{\partial}$-equation, $\bar{\partial} u=f$, on Ω. The existence and regularity properties of the solution to the $\bar{\partial}$-equation are important problems in several complex variables. Our method is to use the $\bar{\partial}$-Neumann problem with weights which was used by Kohn [9], Hörmander [7] to solve the $\bar{\partial}$-problem on weakly pseudo-convex domains. In the case of an annulus, some of the important known results are the following:
(1) If Ω_{1} and Ω_{2} are both strictly pseudo-convex and $n \geq 3$, then Ω satisfies condition $z(q)$ and the $\bar{\partial}$-Neumann problem satisfies the subelliptic $\frac{1}{2}$ estimate (see Kohn [9], Hörmander [7] and Folland and Kohn [6]).
(2) If Ω_{1} and Ω_{2} are pseudoconvex domains with real analytic boundaries in \mathbb{C}^{n} and $0<q<n-1$, then it is proved by Dirridj and Fornaess [5] that the subelliptic estimate holds for the $\bar{\partial}$-Neumann problem on the annulus $\Omega=$ $\Omega_{1} \backslash \bar{\Omega}_{2}$.
(3) If Ω_{1} and Ω_{2} are pseudoconvex domains with smooth boundaries in \mathbb{C}^{n}, the closed range property and global boundary regularity for $\bar{\partial}$ were studied by Shaw [12] for $1 \leq q \leq n-2$ with $n \geq 3$ on the annulus $\Omega=\Omega_{1} \backslash \bar{\Omega}_{2}$. The critical case when $q=n-1$ was established in Shaw [13].

[^0](4) Ahn and Zampieri [2] studied the $\bar{\partial}$-problem on an annulus between an internal p-pseudoconcave and an external q-pseudoconvex domains in \mathbb{C}^{n}.
(5) If Ω_{1} and Ω_{2} are two strictly q-convex domains with smooth boundaries in Stein manifold for some bidegree, Khidr and Abdelkader [8] studied global boundary regularity for $\bar{\partial}$ on the annulus $\Omega=\Omega_{1} \backslash \bar{\Omega}_{2}$.
(6) If Ω_{1} and Ω_{2} are pseudoconvex submanifolds which satisfy property (P), Cho [4] obtained the global boundary regularity for $\bar{\partial}$ on the annulus $\Omega=\Omega_{1} \backslash \bar{\Omega}_{2}$.
(7) If Ω_{1} is a weakly q-convex and Ω_{2} a weakly $(n-q-1)$-convex in an n-dimensional complex manifold X such that $b \Omega_{1}$ and $b \Omega_{2}$ satisfy property (P), Saber [11] obtained the global boundary regularity for $\bar{\partial}$ on the annulus $\Omega=\Omega_{1} \backslash \bar{\Omega}_{2}$.

This paper is arranged as follows. In Section 2, we give the background that are used in the later sections. In Section 3, we prove the basic a priori estimate (3.1). In Section 4, based on the estimate (3.1), one can prove global regularity for $\bar{\partial}$. Moreover, if f is $\bar{\partial}$-closed (p, q)-form, $0<q<n-1$, which is C^{∞} on $\bar{\Omega}$, then the canonical solution u of $\bar{\partial} u=f$ is smooth on $\bar{\Omega}$.

2. Background

Let X be a complex manifold of dimension n with a Hermitian metric g. Let $\Omega \Subset X$ be an open submanifold with smooth boundary $b \Omega$ and defining function ρ. Denote by $L_{1}, L_{2}, \ldots, L_{n}$ a C^{∞} special boundary coordinate chart in a small neighborhood U of $z_{0} \in b \Omega$, i.e., $L_{i} \in T^{1,0}$ and $\left\langle L_{i}, L_{j}\right\rangle=\delta_{i j}$ on U with L_{i} tangential on $U \cap b \Omega$ for $1 \leq i \leq n-1$, that is, $L_{i}(\rho)=0$ for $1 \leq i \leq n-1$ and $L_{n}(\rho)=1$. Then $\bar{L}_{1}, \bar{L}_{2}, \ldots, \bar{L}_{n}$, the conjugate of $L_{1}, L_{2}, \ldots, L_{n}$, form an orthonormal basis of $T^{0,1}$ on U. The dual basis of $(1,0)$ forms are $\omega^{1}, \ldots, \omega^{n}$ with $\omega^{n}=\partial \rho$. Let $\left(\frac{\partial^{2} \rho(z)}{\partial z_{i} \bar{\partial} z_{j}}\right)_{i, j=1}^{n-1}$ be the matrix of the Levi form $\partial \bar{\partial} \rho(z)$ in the complex tangential direction at z. Let $C^{\infty}(\Omega)$ be the space of C^{∞}-function on Ω.

We shall fix the function $\lambda \in C^{\infty}(\bar{\Omega})$ and let t be any nonnegative real number and we write

$$
\lambda_{i j}=\left\langle L_{i} \wedge \bar{L}_{j}, \partial \bar{\partial} \lambda\right\rangle, i, j=1,2, \ldots, n
$$

Let $C_{p, q}^{\infty}(X)$ be the space of (p, q) complex-valued differential forms of class C^{∞} on X, where $0 \leq p \leq n, 0 \leq q \leq n$. Then any (p, q)-form $f \in C_{p, q}^{\infty}(X)$ can be expressed as $f=\sum_{I, J}^{\prime} f_{I, J} d z^{I} \wedge d \bar{z}^{J}$, where $I=\left(i_{1}, \ldots, i_{p}\right)$ and $J=\left(j_{1}, \ldots, j_{q}\right)$ are multiindices and $d z^{I}=d z_{1} \wedge \cdots \wedge d z_{p}, d \bar{z}^{J}=d \bar{z}_{1} \wedge \cdots \wedge d \bar{z}_{q}$. The notation \sum^{\prime} means the summation over strictly increasing multiindices. Denote by $C_{p, q}^{\infty}(\bar{\Omega})=\left\{\left.f\right|_{\bar{\Omega}} ; f \in C_{p, q}^{\infty}(X)\right\}$ the subspace of $C_{p, q}^{\infty}(\Omega)$ whose elements can be extended smoothly up to the boundary. Let $\mathcal{D}(X)$ be the space of C^{∞}-functions with compact support in X. We say that a form $f \in C_{p, q}^{\infty}(X)$ has compact
support in X if its coefficients belongs to $\mathcal{D}(X)$. The subspace of $C_{p, q}^{\infty}(X)$ which has compact support in X is denoted by $\mathcal{D}_{p, q}(X)$. For $f \in C_{p, q}^{\infty}(\Omega)$ and $g \in \mathcal{D}_{p, q-1}(\Omega)$, the formal adjoint operator ϑ of $\bar{\partial}: C_{p, q-1}^{\infty}(\Omega) \longrightarrow C_{p, q}^{\infty}(\Omega)$, with respect to $\langle\cdot, \cdot\rangle$, is defined by:

$$
\langle\bar{\partial} g, f\rangle=\langle g, \vartheta f\rangle
$$

Thus, ϑ can be expressed by

$$
\vartheta f=(-1)^{p-1} \sum_{I, K}^{\prime} \sum_{k=1}^{n} \frac{\partial f_{I \bar{k}} \bar{K}}{\partial \bar{z}^{k}} d z^{I} \wedge d \bar{z}^{K},|K|=q-1
$$

Denote by $L^{2}(\Omega)$ the space of square integrable functions on Ω with respect to the Lebesgue measure in X. For each nonnegative integer $s, W^{s}(\Omega)$ is the space of all the distributions u in $L^{2}(\Omega)$ such that

$$
D^{\alpha} u \in L^{2}(\Omega),|\alpha| \leq s
$$

where α is a multiindex and $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$. The Sobolev s-norm $\left\|\|_{W^{s}}\right.$ is defined by

$$
\|f\|_{W^{s}}=\int_{\Omega} \sum_{|\alpha| \leq s}\left|D^{\alpha} f\right|^{2} d x<\infty
$$

Indeed $W^{s}(\Omega)$ is the closure of $C^{\infty}(\Omega)$ with respect to the norm $\|\cdot\|_{W^{s}}$. The closure of $\mathcal{D}(\Omega)$ with respect to the same topology is denoted by $W_{0}^{s}(\Omega)$. The Sobolev norm $\|f\|_{W^{-1}}$ of order -1 for forms f on Ω is defined by

$$
\|f\|_{W^{-1}}=\sup _{g \in W_{0}^{1}(\Omega)} \frac{|\langle f, g\rangle|}{\|g\|_{W^{1}}}
$$

The norm $\left\|\|_{W^{-1}}\right.$ is weaker than the norm $\| \|$ in the sense that any sequence of functions which is bounded in the norm $\|\|$ has a subsequence which is convergent in the norm $\left\|\|_{W^{-1}}\right.$. Use $W_{p, q}^{s}(\Omega)$ to denote the space of (p, q) forms with coefficients in $W^{s}(\Omega)$.

Denote by $L_{p, q}^{2}(\Omega)$ the space of (p, q)-forms with coefficients in $L^{2}(\Omega)$. For $f, g \in L_{p, q}^{2}(\Omega)$, the inner product $\langle f, g\rangle$ and the norm $\|f\|$ are denoted by:

$$
\langle f, g\rangle=\int_{\Omega} f \wedge \star \bar{g} \text { and }\|f\|^{2}=\langle f, f\rangle
$$

where \star is the Hodge star operator. For $t \geq 0$, denote by $L_{p, q}^{2}(\Omega, t \lambda)$ the space of (p, q)-forms with coefficients in $L^{2}(\Omega)$ with respect to the weighted function $e^{-t \lambda}$. For $f, g \in L_{p, q}^{2}(\Omega, t \lambda)$, we denote the inner product $\langle f, g\rangle_{t}$ and the norm $\|f\|_{t}$ by:

$$
\langle f, g\rangle_{t}=\int_{\Omega} f \wedge \star \bar{g} e^{-t \lambda} \text { and }\|f\|_{t}^{2}=\langle f, f\rangle_{t}
$$

In that case $\langle f, g\rangle_{t}$ denotes $\langle f, g\rangle_{t \lambda}$, that is, we use subscripts t instead of $t \lambda$. Note that since λ is bounded on $\bar{\Omega}$, the two norms $\|\|$ and $\| \|_{t}$ are equivalent.

Define a Hermitian form $Q^{t}(u, u)$ from $\mathcal{D}_{p, q}(\Omega) \times \mathcal{D}_{p, q}(\Omega)$ to \mathbb{C} by

$$
Q^{t}(u, u)=\|\bar{\partial} u\|_{t}^{2}+\left\|\bar{\partial}_{t}^{\star} u\right\|_{t}^{2}+\|u\|_{t}^{2} .
$$

Let $\bar{\partial}: \operatorname{dom} \bar{\partial} \subset L_{p, q}^{2}(\Omega, t \lambda) \longrightarrow L_{p, q+1}^{2}(\Omega, t \lambda)$ be the maximal closure of the Cauchy-Riemann operator and $\bar{\partial}_{t}^{\star}$ be its Hilbert space adjoint. Recall that $\operatorname{dom} \bar{\partial}^{\star}=\operatorname{dom} \bar{\partial}_{t}^{\star}$. The $\bar{\partial}$-Neumann operator $N^{t}=N_{p, q}^{t}: L_{p, q}^{2}(\Omega, t \lambda) \longrightarrow$ $L_{p, q}^{2}(\Omega, t \lambda)$, is defined as the inverse of the restriction of \square^{t} to (ker $\left.\square^{t}\right)^{\perp}$, where $\square^{t}=\bar{\partial} \bar{\partial}_{t}^{\star}+\bar{\partial}_{t}^{\star} \bar{\partial}$ is the weighted Laplace Beltrami operator. The space of the weighted harmonic (p, q)-forms \mathcal{H}_{t} is defined by

$$
\mathcal{H}_{t}=\left\{u \in \mathcal{D}_{p, q}(\Omega): \bar{\partial} u=\bar{\partial}_{t}^{\star} u=0\right\} .
$$

3. The basic a priori estimate

In this section, we prove the basic a priori estimate (3.1). The estimate is similar (but weaker) to the basic estimate obtained by Hörmander in [7] on pseudoconvex domains. A complex manifold X is said to be Stein manifold if there exists an exhaustion function $\mu \in C^{2}(X, \mathbb{R})$ such that $i \partial \bar{\partial} \mu>0$ on X.

Theorem 3.1. Let X be a Stein manifold of dimension n. Let Ω_{1} and Ω_{2} be two open pseudoconvex submanifolds with smooth boundary in X such that $\bar{\Omega}_{2} \Subset \Omega_{1} \Subset X$. Assume that $\Omega=\Omega_{1} \backslash \bar{\Omega}_{2}$. Let ρ be a defining function of Ω near $b \Omega_{1}$ and λ be a smooth function on $\bar{\Omega}$ such that $\lambda=\mu$ in a neighborhood of $b \Omega_{1}$ and $\lambda=-\mu$ in a neighborhood of $b \Omega_{2}$. Then, for $1 \leq q \leq n-2, n \geq 3$, there exist $c, T>0$ such that for every $t \geq T$ there exists $C_{t}>0$ such that

$$
\begin{equation*}
t\|u\|_{t}^{2} \leq c Q^{t}(u, u)+C_{t}\|u\|_{W^{-1}}^{2} \tag{3.1}
\end{equation*}
$$

for $u \in \mathcal{D}_{p, q}(\Omega)$.
Proof. By using a partition of unity $\left\{\xi_{i}\right\}_{i=1}^{m}, \sum_{i=1}^{m} \xi_{i}^{2}=1$, it suffices to prove the estimate (3.1) when u is supported in a small neighborhood U. If $\bar{U} \subset \Omega$, then by the ellipticity of Q^{t} in the interior of Ω we have

$$
\|u\|_{W^{1}}^{2} \leq c^{\prime} Q^{t}(u, u) \text { for } u \in \mathcal{D}_{p, q}(U)
$$

Thus by a well-known inequality in Sobolev space (see, for example, Section 4.2 in Straube [14], page 86 and Proposition 3.1 in Shaw [12]; page 261, inequality (3.3)), we have

$$
\begin{equation*}
\|u\|_{t}^{2} \leq c^{\prime}\|u\|_{W^{1}}^{2}+C_{t}^{\prime}\|u\|_{W^{-1}}^{2} \tag{3.2}
\end{equation*}
$$

which imply (3.1), when $\bar{U} \cap b \Omega=\varnothing$ and $u \in \mathcal{D}_{p, q}(U)$.
If u is supported in a neighborhood U of $b \Omega_{1}$, since Ω is pseudoconvex at $b \Omega_{1}$ and $\lambda=\mu$ is strongly plurisubharmonic on U (shrink U if necessary). Following Hörmander [7], it follows that

$$
t \int_{U \cap \Omega_{1}} \sum_{I, J}^{\prime}\left|u_{I, J}\right|^{2} e^{-t \lambda} d V \leq c^{\prime} Q^{t}(u, u)
$$

for $c^{\prime}>0$ and for $u \in \mathcal{D}_{p, q}\left(U \cap \Omega_{1}\right)$ with $1 \leq q \leq n-1$. Thus, there exists $C_{t}^{\prime}>0$ such that

$$
\begin{equation*}
t \int_{U \cap \Omega_{1}} \sum_{I, J}^{\prime}\left|u_{I, J}\right|^{2} e^{-t \lambda} d V \leq c^{\prime} Q^{t}(u, u)+C_{t}^{\prime}\|u\|_{W^{-1}}^{2} \tag{3.3}
\end{equation*}
$$

for $u \in \mathcal{D}_{p, q}\left(U \cap \Omega_{1}\right)$ with $1 \leq q \leq n-1$.
Let $S_{\delta_{1}}=\left\{z \in X:-\delta_{1}<\rho(z) \leqslant 0\right\}$, where δ_{1} is a positive number (depend on t) small enough. Since $b \Omega_{1}$ is compact, by a finite covering $\left\{U_{\nu}\right\}_{\nu=1}^{m}$ of $b \Omega_{1}$ by neighborhoods U_{ν} as in (3.3), we have

$$
\begin{equation*}
t \int_{S_{\delta_{1}}} \sum_{I, J}^{\prime}\left|u_{I, J}\right|^{2} e^{-t \lambda} d V \leq c^{\prime} Q^{t}(u, u)+C_{t}^{\prime}\|u\|_{W^{-1}}^{2} \tag{3.4}
\end{equation*}
$$

when u is supported in the strip $S_{\delta_{1}}$.
Now since Ω is psudoconcave at $b \Omega_{2}$. Thus we only have to prove (3.1) when u is supported in a neighborhood U such that $\bar{U} \cap b \Omega_{2} \neq \varnothing$. Following Ahn [1], for every integer q with $0 \leq q \leq n-1$, there exists a neighborhood U of z_{0} and a suitable positive constant C such that

$$
\begin{align*}
& 2\left(\|\bar{\partial} u\|_{t}^{2}+\left\|\bar{\partial}_{t}^{\star} u\right\|_{t}^{2}\right)+C\|u\|_{t}^{2} \\
\geq & \frac{1}{2} \sum_{I, J}^{\prime}\left[\sum_{j \geq q+1}\left\|\bar{L}_{j} u_{I, J}\right\|_{t}^{2}+\sum_{j \leq q}\left\|\delta_{j}^{t} u_{I, J}\right\|_{t}^{2}\right] \\
& +\sum_{I, K}^{\prime} \sum_{j, k} \int_{U \cap b \Omega_{2}} \rho_{j k} u_{I, j K} \bar{u}_{I, k K} e^{-t \lambda} d S \\
& -\sum_{I, J}^{\prime} \sum_{j \leq q} \int_{U \cap b \Omega_{2}} \rho_{j j}\left|u_{I, J}\right|^{2} e^{-t \lambda} d S \tag{3.5}\\
& +\sum_{I, K}^{\prime} \sum_{j, k} \int_{U \cap \Omega_{2}} \lambda_{j k} u_{I, j K} \bar{u}_{I, k K} e^{-t \lambda} d V \\
& -\sum_{I, J}^{\prime} \sum_{j \leq q} \int_{U \cap \Omega_{2}} \lambda_{j j} u_{I, J} \bar{u}_{I, J} e^{-t \lambda} d V
\end{align*}
$$

for $u \in \mathcal{D}_{p, q}\left(U \cap \Omega_{2}\right)$, where $\delta_{j}^{t}=e^{t \lambda} L_{j}\left(e^{-t \lambda}\right)$. Since

$$
\begin{aligned}
& \sum_{I, K}^{\prime} \sum_{j, k=1}^{n-1} \rho_{j k} u_{I, j K} \bar{u}_{I, k K}-\sum_{I, J}^{\prime} \sum_{j=1}^{n-1} \rho_{j j}\left|u_{I, J}\right|^{2} \\
= & \sum_{I, K}^{\prime} \sum_{j, k=1}^{n-1}\left(\rho_{j k}-\sum_{l=1}^{n-1} \rho_{l l} \delta_{j k}\right) u_{I, j K} \bar{u}_{I, k K} .
\end{aligned}
$$

Assume that $\left(\rho_{j k}\right)_{j, k=1}^{n-1}$ is diagonal, then $\left(\rho_{j k}-\sum_{l=1}^{n-1} \rho_{l l} \delta_{j k}\right)_{j, k=1}^{n-1}$ is also diagonal and the diagonal elements are negative value of $n-2$ sums of eigenvalues
of the Levi form. Since Ω is psudoconcave at $b \Omega_{2}$. For each $z \in b \Omega_{2}$, we may diagonalize $\left(\rho_{j k}\right)_{j, k=1}^{n-1}$ under a unitary transformation and the positive semi-definiteness is invariant under such transformation. Thus

$$
\left(\rho_{j k}-\frac{1}{q}\left(\sum_{j=1}^{n-1} \rho_{j j}\right) \delta_{j k}\right)_{j, k=1}^{n-1}
$$

is positive semidefinite in $U \cap b \Omega_{2}$. Then, for $1 \leq q \leq n-2$, we have
(3.6) $\sum_{I, K}^{\prime} \sum_{j, k=1}^{n-1} \rho_{j k} u_{I, j K} \bar{u}_{I, k K}-\sum_{I, J}^{\prime} \sum_{j=1}^{n-1} \rho_{j j}\left|u_{I, J}\right|^{2} \geq 0$ for each $z \in U \cap b \Omega_{2}$.

We write

$$
\begin{aligned}
& \sum_{I, K}^{\prime} \sum_{j, k=1}^{n} \int_{U \cap \Omega_{2}} \lambda_{j k} u_{I, j K} \bar{u}_{I, k K} e^{-t \lambda} d V \\
- & \sum_{I, J}^{\prime}\left(\sum_{j=1}^{n-1} \int_{U \cap \Omega_{2}} \lambda_{j j}\right)\left|u_{I, J}\right|^{2} e^{-t \lambda} d V=X_{1}+X_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
X_{1}= & \sum_{I, K}^{\prime} \sum_{j=n} \text { or } \int_{U \cap n} \lambda_{j k} u_{I, j K} \bar{u}_{I, k K} e^{-t \lambda} d V \\
& +\sum_{\substack{I, K \\
n \in K}}^{\prime} \sum_{j, k=1}^{n-1} \int_{U \cap \Omega_{2}} \lambda_{j k}(z) u_{I, j K} \bar{u}_{I, k K} e^{-t \lambda} d V \\
& -\sum_{\substack{I, J \\
n \in J}}^{\prime} \sum_{j=1}^{n-1} \int_{U \cap \Omega_{2}} \lambda_{j j}(z)\left|u_{I, J}\right|^{2} e^{-t \lambda} d V
\end{aligned}
$$

and

$$
\begin{aligned}
X_{2}= & \sum_{\substack{I, K \\
n \notin K}}^{\prime} \sum_{j, k=1}^{n-1} \int_{U \cap \Omega_{2}} \lambda_{j k}(z) u_{I, j K} \bar{u}_{I, k K} e^{-t \lambda} d V \\
& -\sum_{\substack{I, J \\
n \notin J}}^{\prime} \sum_{j=1}^{n-1} \int_{U \cap \Omega_{2}} \lambda_{j j}(z)\left|u_{I, J}\right|^{2} e^{-t \lambda} d V .
\end{aligned}
$$

Take the coordinate functions $z_{1}, z_{2}, \ldots, z_{n}$ about z_{0}. Then in $z_{1}, z_{2}, \ldots, z_{n}$ coordinates, $A=\left(\frac{\partial^{2} \mu}{\partial z_{j} \partial \bar{z}_{k}}\right)\left(z_{0}\right), 1 \leq j, k \leq n-1$ is an Hermitian matrix and there exists a unitary matrix $P=\left(P_{j k}\right)_{1 \leq j, k \leq 1}$ such that $P^{*} A P=A$, where
$A=\left(\lambda_{j}\right)_{j=1}^{n-1}$ is a diagonal matrix whose entries λ_{j} are eigenvalues of A. Set

$$
\omega_{j}=\sum_{k=1}^{n-1} \bar{P}_{k j} z_{k}, j=1, \ldots, n, \text { and } \omega_{n}=z_{n}
$$

Then

$$
\lambda_{j k}^{2}\left(z_{0}\right)=\left(\frac{\partial^{2} \mu}{\partial z_{j} \partial \bar{z}_{k}}\right)\left(z_{0}\right)=\lambda_{j} \delta_{j k}, 1 \leq j, k \leq n-1 .
$$

Every term in X_{1} has the form $\left(\lambda_{j k} u_{I, J}, u_{I, L}\right)$, whenever $n \in J$ or $n \in L$. Applying (3.2) to those J containing n, we have

$$
\left|\left\langle\lambda_{j k} u_{I, J}, u_{I, L}\right\rangle_{t}\right| \leq\left\|\lambda_{j k} u_{I, J}\right\|_{t}\left\|u_{I, L}\right\|_{t} \leq c^{\prime}\left\|u_{I, J}\right\|_{W^{1}}^{2}+C_{t}^{\prime}\left\|u_{I, J}\right\|_{W^{-1}}^{2}+\left\|u_{I, L}\right\|_{t}^{2} .
$$

Thus it follows that

$$
X_{1} \geq-c^{\prime} \sum_{\substack{I, J \\ n \in J}}^{\prime}\left\|u_{I, J}\right\|_{W^{1}}^{2}-C_{t}^{\prime}\|u\|_{W^{-1}}^{2}-\|u\|_{t}^{2}
$$

Let

$$
R(u, u)(z)=\sum_{\substack{I, K \\ n \notin K}}^{\prime} \sum_{j, k=1}^{n-1} \lambda_{j k} u_{I, j K} \bar{u}_{I, k K}-\sum_{\substack{I, J \\ n \notin J}}^{\prime} \sum_{j=1}^{n-1} \lambda_{j j}(z)\left|u_{I, J}\right|^{2} .
$$

Then

$$
\begin{aligned}
R(u, u)\left(z_{0}\right)= & \sum_{\substack{I, K \\
n \notin K}}^{\prime} \sum_{j, k=1}^{n-1} \lambda_{j k}\left(z_{0}\right) u_{I, j K} \bar{u}_{I, k K}-\sum_{\substack{I, J \\
n \notin J}}^{\prime} \sum_{j=1}^{n-1} \lambda_{j j}\left(z_{0}\right)\left|u_{I, J}\right|^{2} \\
= & \sum_{\substack{I, K \\
n \notin K}}^{\prime} \sum_{j, k=1}^{n-1}\left(-\left(\frac{\partial^{2} \mu}{\partial z_{j} \partial \bar{z}_{k}}\right)\left(z_{0}\right)\right) u_{I, j K} \overline{u_{I, k K}} \\
& -\sum_{\substack{I, J \\
n \notin J}}^{\prime} \sum_{j=1}^{n-1}\left(-\left(\frac{\partial^{2} \mu}{\partial z_{j} \partial \bar{z}_{j}}\right)\left(z_{0}\right)\right)\left|u_{I, J}\right|^{2} \\
= & -\sum_{\substack{I, J \\
j \in J \\
n \notin J}}^{\prime} \lambda_{j}\left|u_{I, J}\right|^{2}+\sum_{I, J}^{\prime} \sum_{j=1}^{n \neq 1} \lambda_{j}\left|u_{I, J}\right|^{2} \\
= & \sum_{\substack{I, J \\
j \notin J}}^{\prime} \lambda_{j}\left|u_{I, J}\right|^{2} \geq d \sum_{\substack{I, J \\
n \notin J}}^{\prime}\left|u_{I, J}\right|^{2},
\end{aligned}
$$

where d is the smallest eigenvalues of A at the point $z \in U \cap \bar{\Omega}_{2}$. Then $d(z) \geq d_{0}>0$ for some positive number d_{0} and all $z \in U \cap b \Omega_{2}$. Thus for
$n \geq 3$ and $0<q<n-1$, if we shrink U sufficiently, by continuity of the second derivatives of λ, we have

$$
X_{2} \geq d_{0} \sum_{\substack{I, J \\ n \notin J}}^{\prime}\left\|u_{I, J}\right\|_{t}^{2}
$$

Then we obtain

$$
\begin{align*}
& \sum_{I, K}^{\prime} \sum_{j, k=1}^{n} \int_{U \cap \Omega_{2}} \lambda_{j k} u_{I, j K} \bar{u}_{I, k K} e^{-t \lambda} d V \\
& -\sum_{I, J}^{\prime}\left(\sum_{j=1}^{n-1} \int_{U \cap \Omega_{2}} \lambda_{j j}\right)\left|u_{I, J}\right|^{2} e^{-t \lambda} d V \tag{3.7}\\
\geq & d_{0} \sum_{\substack{I, J \\
n \notin J}}^{\prime}\left\|u_{I, J}\right\|_{t}^{2}-c^{\prime} \sum_{\substack{I, J \\
n \in J}}^{\prime}\left\|u_{I, J}\right\|_{W^{1}}^{2}-C_{t}^{\prime}\|u\|_{W^{-1}}^{2}-\|u\|_{t}^{2} .
\end{align*}
$$

By substituting (3.6) and (3.7) into (3.5), we obtain

$$
\begin{align*}
& 2\left(\|\bar{\partial} u\|_{t}^{2}+\left\|\bar{\partial}_{t}^{\star} u\right\|_{t}^{2}\right)+C\|u\|_{t}^{2}+C_{t}^{\prime}\|u\|_{W^{-1}}^{2} \\
\geq & \frac{1}{2} \sum_{I, J}^{\prime}\left[\left\|\bar{L}_{n} u_{I, J}\right\|_{t}^{2}+\sum_{j=1}^{n}\left\|\delta_{j}^{t} u_{I, J}\right\|_{t}^{2}\right] \tag{3.8}\\
& +d_{0} \sum_{\substack{I, J \\
n \notin J}}^{\prime}\left\|u_{I, J}\right\|_{t}^{2}-c^{\prime} \sum_{\substack{I, J \\
n \in J}}^{\prime}\left\|u_{I, J}\right\|_{W^{1}}^{2}
\end{align*}
$$

If $j=n$ or $k=n$ we have $u_{I, j K}=0$ or $u_{I, k K}=0$ on the boundary. Since $u_{I, J}$ vanishes on the boundary when $n \in J$, by performing the same manipulation as (4.3.6) in Chen and Shaw [3], we have

$$
\left\|\bar{L}_{j} u_{I, J}\right\|_{t}^{2}=\left\|\delta_{j}^{t} u_{I, J}\right\|_{t}^{2}-\left\langle\lambda_{j j} u_{I, J}, u_{I, J}\right\rangle_{t}+O\left(\left\|\bar{L} u_{I, J}\right\|_{t}\left\|u_{I, J}\right\|_{t}\right)
$$

where $j=1,2, \ldots, n$. Using the inequality (3.2), we have for $n \in J$

$$
\begin{align*}
\left\|u_{I, J}\right\|_{W^{1}}^{2} & =\sum_{j=1}^{n}\left\|\bar{L}_{j} u_{I, J}\right\|_{t}^{2}+\sum_{j=1}^{n}\left\|\delta_{j}^{t} u_{I, J}\right\|_{t}^{2}+\left\|u_{I, J}\right\|_{t}^{2} \\
& \leq 4\left(\left\|\bar{L}_{n} u_{I, J}\right\|_{t}^{2}+\sum_{j=1}^{n-1}\left\|\delta_{j}^{t} u_{I, J}\right\|_{t}^{2}\right)+C_{t}^{\prime}\left\|u_{I, J}\right\|_{W^{-1}}^{2} \tag{3.9}
\end{align*}
$$

where C is a constant depending only on t. By combining (3.8) and (3.9) we easily obtain

$$
\begin{equation*}
4 Q^{t}(u, u)+C_{t}^{\prime}\|u\|_{W^{-1}}^{2} \geq\left(\frac{1}{4}-c^{\prime}\right) \sum_{\substack{I, J \\ n \in J}}^{\prime}\left\|u_{I, J}\right\|_{W^{1}}^{2}+d_{\substack{I, J \\ n \notin J}}^{\prime}\left\|u_{I, J}\right\|_{t}^{2} \tag{3.10}
\end{equation*}
$$

By an interpolation theorem in Sobolev space for $n \in J$, we have

$$
\left\|u_{I, J}\right\|_{t}^{2} \leq t^{-1}\left\|u_{I, J}\right\|_{W^{1}}^{2}+C_{t}^{\prime}\left\|u_{I, J}\right\|_{W^{-1}}^{2}
$$

to those J containing n and put into (3.10), we obtain

$$
\begin{equation*}
t \int_{U \cap \Omega_{2}} \sum_{I, J}^{\prime}\left|u_{I, J}\right|^{2} e^{-t \lambda} d V \leq c^{\prime} Q^{t}(u, u)+C_{t}^{\prime}\|u\|_{W^{-1}}^{2} \tag{3.11}
\end{equation*}
$$

for $u \in \mathcal{D}_{p, q}\left(U \cap \Omega_{2}\right)$ with $1 \leq q \leq n-1$.
Let $S_{\delta_{2}}=\left\{z \in X: 0 \leq \rho(z)<\delta_{2}\right\}$, where δ_{2} is a positive number (depend on t) small enough. Since $b \Omega_{2}$ is compact, by a finite covering $\left\{U_{\nu}\right\}_{\nu=1}^{m}$ of $b \Omega_{2}$ by neighborhoods U_{ν} as in (3.11), we have

$$
\begin{equation*}
t \int_{S_{\delta_{2}}} \sum_{I, J}^{\prime}\left|u_{I, J}\right|^{2} e^{-t \lambda} d V \leq c^{\prime} Q^{t}(u, u)+C_{t}^{\prime}\|u\|_{W^{-1}}^{2} \tag{3.12}
\end{equation*}
$$

when u is supported in the strip $S_{\delta_{2}}$.
Let $S_{\delta}=S_{\delta_{1}} \cup S_{\delta_{2}}$, where $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then by using (3.4) and (3.12), we obtain

$$
\begin{equation*}
t \int_{S_{\delta}}\left|u_{I, J}\right|^{2} e^{-t \lambda} d V \leq c^{\prime} Q^{t}(u, u)+C_{t}^{\prime}\|u\|_{W^{-1}}^{2} \tag{3.13}
\end{equation*}
$$

Now, we estimate the integral over $\Omega \backslash S_{\delta}$. Choose $\gamma_{\delta} \in \mathcal{D}(\Omega)$ so that $\gamma_{\delta}(z)=1$ whenever $\rho(z) \leq-\delta$ and $z \in \Omega \backslash S_{\delta}$. By an interpolation theorem in Sobolev space, we have for a constant $s>0$ still to be determined we have the inequality

$$
\left\|\gamma_{\delta} u\right\|_{t}^{2} \leq s\left\|\gamma_{\delta} u\right\|_{W^{1}}^{2}+\frac{1}{s}\left\|\gamma_{\delta} u\right\|_{W^{-1}}^{2}
$$

On the other hand, since Q^{t} is elliptic, by Gårding's inequality, there is a constant C_{2} depending only on the diameter of the domain Ω such that

$$
\begin{aligned}
\left\|\gamma_{\delta} u\right\|_{W^{1}}^{2} & \leq C_{2}\left(Q^{t}\left(\gamma_{\delta} u, \gamma_{\delta} u\right)+\left\|\gamma_{\delta} u\right\|_{t}^{2}\right) \\
& \left.\leq 2 C_{2}\left(\left\|\gamma_{\delta}(\bar{\partial} u)\right\|_{t}^{2}+\left\|\gamma_{\delta}\left(\bar{\partial}^{\star} u\right)\right\|_{t}^{2}+\|\left[\gamma_{\delta}, \bar{\partial}\right] u\right)\left\|_{t}^{2}+\right\|\left[\gamma_{\delta}, \bar{\partial}^{\star}\right] u\left\|_{t}^{2}+\right\| \gamma_{\delta} u \|_{t}^{2}\right) .
\end{aligned}
$$

Since the sum of the commutator terms is bounded by $C_{3}\|u\|^{2}$ for some constant C_{3} dependent of δ, we obtain the inequality

$$
\begin{equation*}
\left\|\gamma_{\delta} u\right\|_{t}^{2} \leq 2 C_{2} s Q^{t}(u, u)+2 C_{2} C_{3} s\|u\|_{t}^{2}+\frac{1}{s}\|u\|_{W^{-1}}^{2} \tag{3.14}
\end{equation*}
$$

By combining (3.13) and (3.14), we obtain

$$
\begin{aligned}
t\|u\|_{t}^{2} \leq & t \int_{S_{\delta}}|u|_{t}^{2} d V+t\left\|\gamma_{\delta} u\right\|_{t}^{2} \\
\leq & C_{1} Q^{t}(u, u)+C_{\varepsilon}^{\prime}\|u\|_{W^{-1}}^{2}+2 C_{2} s t Q^{t}(u, u) \\
& +2 C_{2} C_{3} s t\|u\|_{t}^{2}+\frac{t}{s}\|u\|_{W^{-1}}^{2} \\
= & \left.\left(C_{1}+2 C_{2} s t\right) Q^{t}(u, u)+2 C_{2} C_{3} s t\|u\|_{t}^{2}\right)+\left(C_{t}^{\prime}+\frac{t}{s}\right)\|u\|_{W^{-1}}^{2}
\end{aligned}
$$

Now, we choose small s and large t so that $2 C_{2} C_{3} s<\frac{1}{2}$ and so that $\frac{C_{1}}{t}+2 C_{2} s<$ $\frac{c}{2}$. Then, we obtain the estimate

$$
\|u\|_{t}^{2} \leq c Q^{t}(u, u)+C_{t}\|u\|_{W^{-1}}^{2}
$$

where $C_{t}=2\left(\frac{C_{t}^{\prime}}{t}+\frac{1}{s}\right)$.
Remark 3.1. It is easy to observe that (3.1) implies:

$$
t\|u\|_{t}^{2} \leq c Q^{t}(u, u)+C_{t}\|u\|_{W^{-1}}^{2}
$$

for $u \in \operatorname{Dom}(\square)$.
Lemma 3.2. Let Ω be an "annulus" as in Theorem 3.1 with smooth boundary. Let $\left\{U_{j}\right\}_{j=1}^{N}$ be a finite covering of $b \Omega$ by a local patching. If a basic a priori estimate (3.1) hold in each U_{j} :

$$
t\|u\|_{t}^{2} \leq c Q^{t}(u, u)+C_{t}\|u\|_{W^{-1}}^{2}
$$

for $u \in C_{p, q}^{\infty}\left(\bar{\Omega} \cap U_{j}\right) \cap \operatorname{dom} \bar{\partial}_{t}^{\star}$. Then we have global basic a priori estimate (3.1).

Proof. Let $\left\{\zeta_{j}\right\}_{j=0}^{N}$ be a partition of the unity such that $\zeta_{0} \in \mathcal{D}_{p, q}(\Omega), \zeta_{j} \in$ $\mathcal{D}_{p, q}\left(U_{j}\right), j=1,2, \ldots, N$ and $\sum_{j=0}^{N} \zeta_{j}^{2}=1$ on $\bar{\Omega}$. where $\left\{U_{j}\right\}_{j=1, \ldots, N}$ is a covering of $b \Omega$.

For $u \in \mathcal{D}_{p, q}(\Omega)$ we wish to prove (3.1). From the interior elliptic regularity of $Q^{t}(u, u)$ we have

$$
\left\|\zeta_{0} u\right\|_{W^{1}}^{2} \leq Q^{t}\left(\zeta_{0} u, \zeta_{0} u\right)
$$

On the other hand, by an interpolation theorem in Sobolev space, we have

$$
\left\|\zeta_{0} u\right\|_{t}^{2} \lesssim c\left\|\zeta_{0} u\right\|_{W^{1}}^{2}+C_{t}\left\|\zeta_{0} u\right\|_{W^{-1}}^{2}
$$

It follows

$$
\begin{aligned}
\left\|\zeta_{0} u\right\|_{t}^{2} & \lesssim c Q^{t}\left(\zeta_{0} u, \zeta_{0} u\right)+C_{t}\left\|\zeta_{0} u\right\|_{W^{-1}}^{2} \\
& \lesssim c Q^{t}(u, u)+C_{t}\|u\|_{W^{-1}} .
\end{aligned}
$$

Similarly, for $j=1, \ldots, N$, using the hypothesis, we have

$$
\begin{aligned}
\left\|\zeta_{j} u\right\|_{t}^{2} & \lesssim c Q^{t}\left(\zeta_{j} u, \zeta_{j} u\right)+C_{t}\left\|\zeta_{j} u\right\|_{W^{-1}}^{2} \\
& \lesssim c Q^{t}(u, u)+C_{t}\|u\|_{W^{-1}}^{2}
\end{aligned}
$$

Summing up over j, we get the proof of the lemma.

4. Global regularity up to the boundary

As an immediate consequence of the basic estimate (3.1) is the following results:

Lemma 4.1. Let Ω be an "annulus" as in Theorem 3.1 with smooth boundary. Then, for a sufficiently large t and for $1 \leq q \leq n-2$, $n \geq 3$, we have
(1) \mathcal{H}_{t} is finite dimensional.
(2) The Laplacian \square^{t} has closed range in $L_{p, q}^{2}(\Omega)$.
(3) The operator $\bar{\partial}$ has closed range in $L_{p, q}^{2}(\Omega)$ and $L_{p, q+1}^{2}(\Omega)$.
(4) The operator $\bar{\partial}^{\star}$ has closed range in $L_{p, q}^{2}(\Omega)$ and $L_{p, q-1}^{2}(\Omega)$.
(5) There exists $C>0$ such that for all $u \in \mathcal{D}^{p, q}(\Omega)$ with $u \perp \mathcal{H}_{t}$, we have

$$
\begin{equation*}
\|u\|_{t}^{2} \leq C\left(\|\bar{\partial} u\|_{t}^{2}+\left\|\vartheta_{t} u\right\|_{t}^{2}\right) . \tag{4.1}
\end{equation*}
$$

Proof. Inequality (3.1) implies that from every sequence $\left\{u_{\nu}\right\}_{\nu=1}^{\infty}$ in dom $\bar{\partial}$ $\cap \operatorname{dom} \bar{\partial}_{t}^{\star}$ with $\left\|u_{\nu}\right\|_{t}$ bounded and $\bar{\partial} u_{\nu} \longrightarrow 0, \bar{\partial}_{t}^{*} u_{\nu} \longrightarrow 0$, one can extract a subsequence which converges in (weighted) $L_{p, q}^{2}(\Omega)$. It suffices to find a subsequence which converges in $W_{p, q}^{-1}(\Omega)$ (using that $L_{p, q}^{2}(\Omega) \hookrightarrow W_{p, q}^{-1}(\Omega)$ is compact); (3.1) implies that such a subsequence is cauchy (hence convergent) in $L_{p, q}^{2}(\Omega)$. General Hilbert space theory (Hörmander [7]; Theorems 1.1.3 and 1.1.2) now gives that \mathcal{H}_{t} is finite dimensional and that $\bar{\partial}: L_{p, q}^{2}(\Omega) \longrightarrow$ $L_{p, q+1}^{2}(\Omega)$ and $\bar{\partial}_{t}^{\star}: L_{p, q}^{2}(\Omega) \longrightarrow L_{p, q-1}^{2}(\Omega)$ have closed range.

To prove (4.1), we assume that (4.1) does not hold and deduce a contradiction. If for every $\nu \in \mathbb{N}$ there exists a $u_{\nu} \perp \mathcal{H}_{t}$, then $\left\|u_{\nu}\right\|_{t}=1$ such that

$$
\begin{equation*}
\left\|u_{\nu}\right\|_{t}^{2} \geq \nu\left(\left\|\bar{\partial} u_{\nu}\right\|_{t}^{2}+\left\|\vartheta_{t} u_{\nu}\right\|_{t}^{2}\right) \tag{4.2}
\end{equation*}
$$

Combining this and (3.1), we have

$$
\left\|u_{\nu}\right\|_{t}^{2} \leq C_{t}\left\|u_{\nu}\right\|_{W^{-1}}^{2}
$$

which implies u_{ν} converges in L^{2} to u where $u \perp \mathcal{H}_{t}$. By (4.2) we have that $u \in \mathcal{H}_{t}$, a contradiction. Thus (4.1) must hold for all $u \perp \mathcal{H}_{t}$.

As an immediate consequence of the basic estimate (4.1) are the following theorems whose proof can be found in Hörmander [7].

Theorem 4.2. Let Ω be an "annulus" as in Theorem 3.1 with smooth boundary. Then, for $1 \leq q \leq n-2, n \geq 3$, the range of \square^{t} is closed and there exists a bounded linear operator N^{t} for sufficiently large $t>0$ satisfies the following properties:
(i) $\operatorname{range}\left(N^{t}\right) \subset \operatorname{dom}\left(\square^{t}\right), N^{t} \square^{t}=I$ on $\operatorname{dom}\left(\square^{t}\right)$,
(ii) For $f \in L_{p, q}^{2}(\Omega)$, we have $u=\bar{\partial} \bar{\partial}_{t}^{\star} N^{t} f \oplus \bar{\partial}_{t}^{\star} \bar{\partial} N^{t} f$,
(iii) $\bar{\partial} N^{t}=N^{t} \bar{\partial}$, and $\bar{\partial}_{t}^{\star} N^{t}=N^{t} \bar{\partial}_{t}^{\star}$,
(iv) For all $f \in L_{p, q}^{2}(\Omega)$, we have the estimates

$$
\begin{gathered}
\left\|N^{t} f\right\|_{t} \leq c\|f\|_{t} \\
\left\|\bar{\partial} N^{t} f\right\|_{t}+\left\|\bar{\partial}_{t}^{\star} N^{t} f\right\|_{t} \leq \sqrt{c}\|f\|_{t}
\end{gathered}
$$

(v) If $f \in \operatorname{ker}\left(\square_{t}\right)$, then $\bar{\partial}_{t}^{\star} N^{t} f$ gives the solution u_{t} to the equation $\bar{\partial} u_{t}=f$ of minimal $u_{t} \in L_{p, q-1}^{2}(\Omega)$-norm.
(vi) If $f \in \operatorname{ker}\left(\square_{t}\right)$, then $\bar{\partial} N^{t} f$ gives the solution u_{t} to the equation $\bar{\partial}_{t}^{\star} u_{t}=f$ of minimal $u_{t} \in L_{p, q+1}^{2}(\Omega)$-norm.

By Theorem 4.2(ii) and the density of $C_{p, q}^{\infty}(\bar{\Omega})$ in $W_{p, q}^{s}(\Omega)$, the following is immediate.

Theorem 4.3. Let Ω be an "annulus" as in Theorem 3.1 with smooth boundary. If $f \in C_{p, q}^{\infty}(\bar{\Omega})$ with $1 \leq q \leq n-2, n \geq 3$ and $\left.N^{t} f \in C_{p, q}^{\infty} \bar{\Omega}\right)$, then for any nonnegative integer s there exist constants C_{s} and T_{s} such that

$$
\begin{equation*}
\left\|N^{t} f\right\|_{W^{s}} \leq C_{s}\|f\|_{W^{s}} \text { for every } t>T_{s} \tag{4.3}
\end{equation*}
$$

Proof. The proof is the same as in [9].
Using the elliptic regularization method which was used in [9], one can pass from the a priori estimates (3.1) to actual estimates and we can prove the following theorem:

Theorem 4.4. Let Ω be an "annulus" as in Theorem 3.1 with smooth boundary. For every integer $s \geq 0$ and real $t>T>0$ the weighted $\bar{\partial}$-Neumann operator N^{t} is bounded from $W_{p, q}^{s}(\Omega)$ into itself for $1 \leq q \leq n-2, n \geq 3$.

By Theorem 4.3 and the density of $C_{p, q}^{\infty}(\bar{\Omega})$ in $W_{p, q}^{s}(\Omega)$, the following is immediate.

Corollary 1. Let Ω be an "annulus" as in Theorem 3.1 with smooth boundary. If $f \in W_{p, q}^{s}(\Omega)$, $s=0,1,2,3, \ldots$ satisfies $\bar{\partial} f=0$, where $1 \leq q \leq n-2, n \geq 3$, then there exists $u \in W_{p, q-1}^{s}(\Omega)$ so that $\bar{\partial} u=f$ on Ω with estimate

$$
\|u\|_{W^{s}} \leq C_{s}\|f\|_{W^{s}}
$$

Theorem 4.5. Let Ω be an "annulus" as in Theorem 3.1 with smooth boundary. Then, for $f \in C_{p, q}^{\infty}(\bar{\Omega})$, with $\bar{\partial} f=0,1 \leq q \leq n-2$, $n \geq 3$, there exists $u \in C_{p, q-1}^{\infty}(\bar{\Omega})$ such that $\bar{\partial} u=f$.
Proof. The proof is the same as in [10].

References

[1] H. Ahn, Global boundary regularity for the $\bar{\partial}$-equation on q-pseudoconvex domains, Math. Nachr. 280 (2007), no. 4, 343-350.
[2] H. Ahn and G. Zampieri, Global regularity of $\bar{\partial}$ on an annulus between a Q-pseudoconvex and a P-pseudoconcave boundary, Pure Appl. Math. Q. 6 (2010), no. 3, 647-661.
[3] S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Stud. Adv. Math. 19, Amer. Math. Soc., Providence, R.I., 2001.
[4] H. R. Cho, Global regularity of the $\bar{\partial}-$ Neumann problem on an annulus between two pseudoconvex manifolds which satisfy property (P), Manuscripta Math. 90 (1996), no. 4, 437-448.
[5] M. Dirridj and J. E. Fornaess, Subelliptic estimate for the d-Neumann problem, Duke Math. J. 48 (1981), no. 1, 93-107.
[6] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Stud. 75, Princeton University Press, Princeton, N.J., 1972.
[7] L. Hörmander, L^{2} estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89-152.
[8] S. Khidr and O. Abdelkader, Global regularity and L^{p} estimate for $\bar{\partial}$ on an annulus between two strictly pseudoconvex domains in a Stein manifold, C. R. Math. Acad. Sci. Paris 351 (2013), no. 23-24, 883-888.
[9] J. J. Kohn, Global regularity for $\bar{\partial}$ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292.
[10] S. Saber, The $\bar{\partial}$-problem on q-pseudoconvex domains with applications, Math. Slovaca 63 (2013), no. 3, 521-530.
[11] , Global regularity for $\bar{\partial}$ on an annulus between two weakly convex domains which satisfy property (P), submitted.
[12] M.-C. Shaw, Global solvability and regularity for $\bar{\partial}$ on an annulus between two weakly pseudoconvex domains, Trans. Amer. Math. Soc. 291 (1985), no. 1, 255-267.
[13] , The closed range property for $\bar{\partial}$ on domains with pseudoconcave boundary, Complex analysis, 307-20, Trends Math., Birkhuser/Springer Basel AG, Basel, 2010.
[14] E. J. Straube, Lectures on the L^{2}-Sobolev Theory of the $\bar{\partial}$-Neumann Problem, ESI Lectures in Mathematics and Physics, February, 2010.

Sayed Saber
Mathematics Department
Faculty of Science
Beni-Suef University
Egypt
E-mail address: sayedkay@yahoo.com

[^0]: Received October 15, 2016; Accepted March 7, 2017.
 2010 Mathematics Subject Classification. 32F10, 32W05, 32W10.
 Key words and phrases. Stein manifold, $\bar{\partial}$ and $\bar{\partial}$-Neumann operator, pseudoconvex domains.

