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GLOBAL SOLUTIONS FOR THE 8-PROBLEM ON NON
PSEUDOCONVEX DOMAINS IN STEIN MANIFOLDS

SAYED SABER

ABSTRACT. In this paper, we prove basic a priori estimate for the &-
Neumann problem on an annulus between two pseudoconvex submani-
folds of a Stein manifold. As a corollary of the result, we obtain the
global regularity for the d-problem on the annulus. This is a manifold
version of the previous results on pseudoconvex domains.

1. Introduction

Let X be a Stein manifold of dimension n > 3. Let €; and Q> be two
open pseudoconvex submanifolds with smooth boundary in X such that Q, €
Q; € X. Assume that Q = 9\ Qs. In this paper, we prove the basic a priori
estimate for the 9-Neumann problem on €. Also, we study the global boundary
regularity of the d-equation, du = f, on €. The existence and regularity
properties of the solution to the d-equation are important problems in several
complex variables. Our method is to use the O-Neumann problem with weights
which was used by Kohn [9], Hérmander [7] to solve the d-problem on weakly
pseudo-convex domains. In the case of an annulus, some of the important
known results are the following:

(1) If Q; and Qg are both strictly pseudo-convex and n > 3, then ( satisfies
condition z(¢) and the -Neumann problem satisfies the subelliptic % estimate
(see Kohn [9], Héormander [7] and Folland and Kohn [6]).

(2) If Q; and Qg are pseudoconvex domains with real analytic boundaries
in C" and 0 < ¢ < n — 1, then it is proved by Dirridj and Fornaess [5] that
the subelliptic estimate holds for the O-Neumann problem on the annulus =
Q1N s.

(3) If 1 and Q9 are pseudoconvex domains with smooth boundaries in C",
the closed range property and global boundary regularity for @ were studied
by Shaw [12] for 1 < ¢ < n — 2 with n > 3 on the annulus Q = 2;\ Q. The
critical case when ¢ = n — 1 was established in Shaw [13].
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1788 S. SABER

(4) Ahn and Zampieri [2] studied the d-problem on an annulus between an
internal p-pseudoconcave and an external g-pseudoconvex domains in C”.

(5) If Q1 and Qg are two strictly g-convex domains with smooth boundaries
in Stein manifold for some bidegree, Khidr and Abdelkader [8] studied global
boundary regularity for @ on the annulus = Q;\ Q.

(6) If Q; and Qo are pseudoconvex submanifolds which satisfy property
(P), Cho [4] obtained the global boundary regularity for 9 on the annulus
Q= Q) \ Q.

(7) If O is a weakly g-convex and €2 a weakly (n — ¢ — 1)-convex in an
n-dimensional complex manifold X such that b§); and b€y satisfy property
(P), Saber [11] obtained the global boundary regularity for d on the annulus
0=\ Q.

This paper is arranged as follows. In Section 2, we give the background that
are used in the later sections. In Section 3, we prove the basic a priori estimate
(3.1). In Section 4, based on the estimate (3.1), one can prove global regularity
for 8. Moreover, if f is O-closed (p, q)-form, 0 < ¢ < n — 1, which is C* on Q,
then the canonical solution u of Ou = f is smooth on €.

2. Background

Let X be a complex manifold of dimension n with a Hermitian metric g.
Let @ € X be an open submanifold with smooth boundary b and defining
function p. Denote by L1, Lo, ..., L, a C special boundary coordinate chart
in a small neighborhood U of 29 € b, ie., L; € TH? and (L;, L;) = &;;
on U with L; tangential on U NbQ for 1 < i < n —1, that is, L;i(p) = 0
for 1 < i <n-—1and L,(p) = 1. Then Ly, Ls,...,L,, the conjugate of

Li,Ls,...,L,, form an orthonormal basis of T%! on U. The dual basis of
n—1

(1,0) forms are w!, ..., w" with w™ = dp. Let (%) be the matrix of
Z2i0zj i,jzl

the Levi form 9dp(z) in the complex tangential direction at z. Let C>(Q2) be
the space of C'*°-function on €.

We shall fix the function A € C°°(Q) and let ¢ be any nonnegative real
number and we write

/\ij = (Li/\fj,85/\>, i,j: 1,2,...,n.

Let C5%,( X) be the space of (p, ¢) complex-valued differential forms of class C*°
on X, where 0 < p <n, 0 < ¢ <n. Then any (p, q)-form f € Cp5,(X) can be
expressed as f = Z/fI’szI Adz?, where I = (iq,...,ip) and J = (j1,...,Jq)
I,J
are multiindices and dz! =dz A--- A dzp, dz7 =dz A A dZz,. The notation
Z' means the summation over strictly increasing multiindices. Denote by
C2 () = { flg; [ € C(X)} the subspace of C° () whose elements can be
extended smoothly up to the boundary. Let D(X) be the space of C*°-functions
with compact support in X. We say that a form f € Cp% (X) has compact
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support in X if its coefficients belongs to D(X). The subspace of Cp<(X)
which has compact support in X is denoted by D, ,(X). For f € CJ5,(Q) and
g € Dpq-1(9), the formal adjoint operator ¢ of 9 : C3°, 1 (Q2) — C%, (),
with respect to (-, -), is defined by:

(99, f) = (9, 9f).

Thus, ¥ can be expressed by
I Of =
0f = (Y S IR gt p e k=g 1.
ILK k=1 0z

Denote by L?(2) the space of square integrable functions on  with respect
to the Lebesgue measure in X. For each nonnegative integer s, W*(2) is the
space of all the distributions v in L?(£2) such that

DY € L*(Q), |a|< s,

where « is a multiindex and | & |= @3 + a2 + -+ + a,. The Sobolev s-norm
I [[ws is defined by

1 Fllwe = / S 1D fPdr < oo,

loof<s

Indeed W*(Q) is the closure of C°° () with respect to the norm || - ||yws. The
closure of D(§2) with respect to the same topology is denoted by W (€2). The
Sobolev norm || f||y,—1 of order —1 for forms f on € is defined by

fr9
s = sup {5
gEWR () llgllw
The norm || ||y-1 is weaker than the norm || || in the sense that any sequence
of functions which is bounded in the norm || || has a subsequence which is

convergent in the norm || [ly-1. Use Wy () to denote the space of (p,q)
forms with coefficients in W* ().

Denote by L2 ,(€2) the space of (p,q)-forms with coefficients in L?(Q). For
f,g € L2 (Q), the inner product (f, g) and the norm || f|| are denoted by:

(f.9) = /QfA*y and || £ = (£, f),

where x is the Hodge star operator. For ¢ > 0, denote by L]%,q(Q, tA) the space
of (p, q)-forms with coefficients in L?(Q2) with respect to the weighted function
e~ For f,g € Lqu (Q,tX), we denote the inner product (f, g)¢ and the norm

17l by:
(frg) = / Faxg e ™ and [|f]2 = (f, ).
Q

In that case (f,g): denotes (f, g):x, that is, we use subscripts ¢ instead of tA.

Note that since A is bounded on {2, the two norms || || and || ||; are equivalent.
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Define a Hermitian form Q(u,u) from D, ,(Q) x D, 4(2) to C by
Q" (u,u) = [Full} + Ty ull? + [ful?.
Let 8 : domd C L2 (Q,tA) — L2 (€, t)) be the maximal closure of the
Cauchy-Riemann operator and 5: be its Hilbert space adjoint. Recall that
domd" = domd,. The d-Neumann operator N* = N}, ¢ L2 (Q,tX) —
L2 (Q,t)), is defined as the inverse of the restriction of ' to (ker (O)*, where

O = 55: + 5:5 is the weighted Laplace Beltrami operator. The space of the
weighted harmonic (p, ¢)-forms H; is defined by

H; = {u € Dp4(Q) : Ju = Ju = 0}.

3. The basic a priori estimate

In this section, we prove the basic a priori estimate (3.1). The estimate is
similar (but weaker) to the basic estimate obtained by Hérmander in [7] on
pseudoconvex domains. A complex manifold X is said to be Stein manifold if
there exists an exhaustion function p € C?(X,R) such that i99u > 0 on X.

Theorem 3.1. Let X be a Stein manifold of dimension n. Let 1 and €5
be two open pseudoconvexr submanifolds with smooth boundary in X such that
Q€ Q) € X. Assume that Q = Q\Qy. Let p be a defining function of
near bQy and X be a smooth function on Q such that A = p in a neighborhood
of b1 and A = —p in a neighborhood of b€)y. Then, for 1 <g<n-—2,n >3,
there exist ¢, T > 0 such that for every t > T there exists Cy > 0 such that

(3.1) tlullf < cQ"(u,u) + Cillullfy -
foru e Dy 4(2).
Proof. By using a partition of unity {&}™,, Y7", &2 = 1, it suffices to prove

the estimate (3.1) when u is supported in a small neighborhood U. If U C €,
then by the ellipticity of Q* in the interior of { we have

ull3p: < ¢ Q' (u,u) for u € D, ,(U).

Thus by a well-known inequality in Sobolev space (see, for example, Section 4.2
in Straube [14], page 86 and Proposition 3.1 in Shaw [12]; page 261, inequality
(3.3)), we have

2 2 2
(3-2) lully < ¢ [lullys + C llully—

which imply (3.1), when U NbQ = & and u € D, 4(U).

If u is supported in a neighborhood U of b€}y, since {2 is pseudoconvex at
b and A = p is strongly plurisubharmonic on U (shrink U if necessary).
Following Hormander [7], it follows that

/
t Z lur g eV < ¢ Q' (u,u)
UnQ. T
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for ¢ > 0 and for u € D, (U N Q) with 1 < g < n — 1. Thus, there exists
C} > 0 such that

(33) t/ Z/ ‘uI,J|2 eft)‘dv < c Qt(U; U) —+ C,{ Hu”?/l/_l
une: 77
for u € Dp(UNQ) with1 <g<n-—1.
Let S5, = {z € X : =61 < p(z) < 0}, where ¢; is a positive number (depend
on t) small enough. Since b}y is compact, by a finite covering {U, }7_; of b§}
by neighborhoods U, as in (3.3), we have

(3.4) tf S eV < ¢ Q uyu) + ) llull?y
S5, I1,J
when w is supported in the strip Ss,.
Now since (2 is psudoconcave at b€ds. Thus we only have to prove (3.1) when
u is supported in a neighborhood U such that U N b8y # @. Following Ahn
[1], for every integer ¢ with 0 < ¢ < n — 1, there exists a neighborhood U of zg
and a suitable positive constant C' such that

2([ullf + 133 ull?) + Cllul?

1 1 —
>S50 | X 1Tl + 3 I8l
1,J

j=q+1 Ji<q
/
+Z Z/ pikur UL kK € NS
TR GEJunees
(3.5) /
-3 Z/ pjj lur,g* e”dS
T7 =gl Unbas
!
+ Z Z Njk g KU ki €NV

IK jk UNQa
l
§ : § : — —tA
— / )\jjU[)J ur,.ge av
LJ j<q?UnSz

for u € Dy o(U NQy), where 8¢ = e'*L;(e~"*). Since

n—1 n—1
! _ li 2
E E PikUI jKUT KK — E E pjj|u1,J
I,K jk=1 I,J j=1
n—1 n—1
/ J—
=> > (Pﬂf - > 5jk> UL KWL KK -
I,K jk=1 =1

n
Assume that (pjk)?;il is diagonal, then (pjk — E;:ll p”5jk> is also diag-
’ J,

onal and the diagonal elements are negative value of n — 2 sums of eigenvalues
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of the Levi form. Since Q is psudoconcave at bf)y. For each z € by, we

may diagonalize (pjk)?gil under a unitary transformation and the positive
semi-definiteness is invariant under such transformation. Thus

1 n—1
Pik =4 > pii | i
j=1

is positive semidefinite in U N b{y. Then, for 1 < g < n — 2, we have

n—1

jk=1

n—1 n—1
/ /
(3.6) Z Z PikUIGKUL KK — Z E pjilur g|? >0 for each z € U N bQy.
I,LK jk=1 I,J j=1
We write
n
' = —tA
/ NjkUrjx Ur gk € dV
LK jk=17UNQ2
, n—1
2 —tA
- / Njj | lur g2 eV = X1 4 X,
I,J \j=17UNQ:
where
' tA
X1 = Z Nk ur jr Ur ki € dV
I,K j=n or k= UnQz
, n—1
A
Y / e i e €AV
I,K jk=1 UNQs
nek
2 —tA
Z Z/ Njj(2)|ur,s|" e dV,
1,J j=1 UNQa
neJ
and
, n—1
= —tA
=Y [ AEu ey
I,K jk=1 UNQo
n¢ K
/nfl
2 —tA
Y[ s ey,
1,J j=17UNS2
n¢J
ake the coordinate functions zq, 2s,..., 2, about zg. en in z1,22,...,2n
Take th dinate funct , 29, , bout zy. Th 29, ’

coordinates, A = (%) (20), 1 < j,k <n—1is an Hermitian matrix and
J
there exists a unitary matrix P = (Pjx)1<; k<1 such that P*AP = A, where
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A= ()\j)?;ll is a diagonal matrix whose entries \; are eigenvalues of A. Set

w; = E Prjzp, j=1,...,n, and w, = z,.

Then

A2 (z)( Gl )(z )= A0y, 1<jk<n—1.

ik \ <0 azjaék 0 705k, LS R >
Every term in X; has the form (A ur s, urr), whenever n € J or n € L.
Applying (3.2) to those J containing n, we have

[Nk ur,g,un,p)el < Ikursllellurclle < € urglli +Chllursllgy -2+ lurc|l?.

Thus it follows that
! 2 2
X1 = =S ur sl — G Jully o = [l

I,J
neJ
Let
n—1
i
E E AjpUr K UL kK — E Ajj (2)|ur,g]?.
ILK jk=1 I,J j=1
n¢gK n¢J
Then

n—1 n—1
0) = ZI Z Nj(z0)ur jx Uk — Z/ Z Njj(20)|ur g2

1K jh=1 1,7 =1
n¢g K n¢J
B> ( (a " )<ZO>) w TR
LK jk=1 %%k
n¢gK
S5 (- (52 ) )Y
- 20) | Jur,g
= 02;0%;
n¢J
n—1
= —Z Nlura? 4+ 33" Al f?
I,J j=1
]EJ ng¢J
n¢J
! /
= Z Ajlug g |* > dz ur.l?,
1,7 1,7
i¢J ngJ
n¢J

where d is the smallest eigenvalues of A at the point z € U N Qy. Then
d(z) > dp > 0 for some positive number dy and all z € U N bQy. Thus for
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n >3 and 0 < ¢ < n—1, if we shrink U sufficiently, by continuity of the second
derivatives of A\, we have

/

Xz >doy . flur s}
I,J
né¢J

Then we obtain

n
l
§ : § : — —tX
>\jk: Ur ik Ur kK € dVv
1K jk=17UN2

, n—1
(3.7) -> Z/ Njj | lurg* e=av
1,0 \j=17U

N

! 2 ! 2 2
>doY  ursllf = Nurallyy: = Cllullyy—r = lfull?.
I,J I,J

n¢J neJ
By substituting (3.6) and (3.7) into (3.5), we obtain

o )
2 (118ull? + 1187 ull?) + Cllul + Cf lully -

1 / . 9 n \ )
(3.8) =z 51’.] HLnul,JHt +;H6jul7j|‘t
+do > Murg 2 = ¢S Nural? -
I,J 1.J
n¢J neJ

If j =nor k=n we have us jx = 0 or ur ,x = 0 on the boundary. Since uy, s
vanishes on the boundary when n € J, by performing the same manipulation
as (4.3.6) in Chen and Shaw [3], we have

|Zjur.s ||} = [|85ur.s|” — (\jjur,s urs)e + O (|Turs|), llursl,)

where j = 1,2,...,n. Using the inequality (3.2), we have for n € J

n n
lar a3 = Y- N Egurally + D 15ural; + lursl?
j=1 j=1

(3.9)

2
‘W—l )

n—1
< A(|Zuural; + D2 185urall}) + Cf ur.s

j=1
where C' is a constant depending only on ¢. By combining (3.8) and (3.9) we
easily obtain

1 4 /
(3.10)  4Q"(u,u) + Cy |ullfy—r > <4 - c’) Z s, sl + dOZ [
1,J IJ

neJ n¢J
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By an interpolation theorem in Sobolev space for n € J, we have
lur sl <t ur gl + Cllurs -

to those J containing n and put into (3.10), we obtain

/
(3.11) t D lurgl eV < ¢ Q (uyu) + O Jfullzp—
UnNQo I,J

for u € Dpo(UNQy) with 1 <g<n-—1.

Let S5, = {z € X : 0 < p(2) < 2}, where d2 is a positive number (depend
on t) small enough. Since bQ23 is compact, by a finite covering {U, }7"; of 2o
by neighborhoods U, as in (3.11), we have

(3.12) t/ S Jur g eV < ¢ QHu,u) + C full?y
Ssy 1,0

when v is supported in the strip Ss,.
Let Ss = S5, U Ss,, where 6 = min{d;, d2}. Then by using (3.4) and (3.12),
we obtain

(3.13) t/ ur,s)? e AV < ¢ Q" (u,u) + Cf ulljy -
Ss

Now, we estimate the integral over Q\Ss. Choose 75 € D(Q2) so that ys(z) =1
whenever p(z) < —6¢ and z € Q\Ss. By an interpolation theorem in Sobolev
space, we have for a constant s > 0 still to be determined we have the inequality

2 2 1 2
lvsully < s Ivsullws + < vsully -1 -

On the other hand, since @ is elliptic, by Garding’s inequality, there is a
constant Cy depending only on the diameter of the domain €2 such that

sl <Ca (Q (vsu, vsu) + ||ysull?)
§202(\|’75(5U)Ht2+||75(5*U)||t2+||[75,5] W) +1175,97] UH?"‘H%“H?)

Since the sum of the commutator terms is bounded by Cs ||u||2 for some con-
stant C3 dependent of §, we obtain the inequality

(314)  lhwull? < 2055Q"(w ) +205Cos Jull? 4+ ulfy
By combining (3.13) and (3.14), we obtain
Eull? <t /S [ul2dV + ¢ |[ysul
5
< C1 Q' (u,u) + CL ||ullZy -1 + 2Csst Q' (u,u)
+20,Cyst ul? + ¢ ully

t
= (C1 + 2C2st) Q" (u,u) + 2C2Castl[ulf) + (Cf + ) [lull5y-1 -

S
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Now, we choose small s and large t so that 2C5C3s < % and so that % +2C5s <
5. Then, we obtain the estimate

2 2
lull; < Q" (u,u) + C Jlully -,

where C :2(%+1). O

Remark 3.1. It is easy to observe that (3.1) implies:
lullf < eQ(uyw) + C Julliy -+
for u € Dom(0).

Lemma 3.2. Let Q) be an “annulus” as in Theorem 3.1 with smooth boundary.
Let {Uj}j-\]:1 be a finite covering of bS) by a local patching. If a basic a priori
estimate (3.1) hold in each U :

tllullf < e Q" (uyu) + Cy llulyy -
foru € C;fq(ﬁ nU;) N domgt*. Then we have global basic a priori estimate
(3.1).

Proof. Let {Cj}é‘v:o be a partition of the unity such that (o € D, (), (; €
Dpq(U)), j = 1,2,...,N and 300 (¢? = 1 on Q. where {U;};—1,..n is a
covering of bQ2.

For u € Dy, 4(2) we wish to prove (3.1). From the interior elliptic regularity
of Q*(u,u) we have

ISoully < Q" (Cou, Gow).
On the other hand, by an interpolation theorem in Sobolev space, we have
1Coull? < eliCoulliys + CellCoully -1
It follows
ICoull? < ¢ Q" (Gous Gou) + Cl[Goullfy—
S Q" (u,u) + Cillullw -1
Similarly, for j = 1,..., N, using the hypothesis, we have
IGullf S e QM (Gu, Giu) + CillGullfy
< Q" (u,u) + Cellulfy .

Summing up over j, we get the proof of the lemma. O

4. Global regularity up to the boundary

As an immediate consequence of the basic estimate (3.1) is the following
results:
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Lemma 4.1. Let Q be an “annulus” as in Theorem 3.1 with smooth boundary.
Then, for a sufficiently large t and for 1 < g <n—2, n > 3, we have
(1) Hy is finite dimensional.
The Laplacian O has closed range in L2 ,(€2).
The operator O has closed range in Lp7q(Q) and L2 .1 (€2).

(2)

3) 5

243 The operator @ has closed range in L2 () and Lg g—1(92).
1

(4.1) lullf < CUIOullf + [9eull?)-

Proof. Inequahty (3.1) implies that from every sequence {u,}2; in domd
Ndomd; with ||u,||; bounded and du, —» 0, d,u, —> 0, one can extract
a subsequence which converges in (weighted) L2  (€). It suffices to find a
subsequence which converges in W, }(€) (using that L2 (€) < W, () is
compact); (3.1) implies that such a subsequence is cauchy (hence convergent)
in L2 (). General Hilbert space theory (Hérmander [7]; Theorems 1.1.3

and 1.1.2) now gives that H is finite dimensional and that & : L2 () —
L2 ,+1(Q) and ) : L2 ,(©) — L2, 1(Q) have closed range.
To prove (4.1), we assume that (4.1) does not hold and deduce a contradic-
tion. If for every v € N there exists a u, L Hy, then |luy||+ = 1 such that
(4.2) luli? = v(19uy |7 + 19w [I7)-
Combining this and (3.1), we have
lun 7 < Celluw Iy

which implies u,, converges in L? to u where u | H;. By (4.2) we have that
u € Hy, a contradiction. Thus (4.1) must hold for all u L H;. O

As an immediate consequence of the basic estimate (4.1) are the following
theorems whose proof can be found in Hérmander [7].

Theorem 4.2. Let Q be an “annulus” as in Theorem 3.1 with smooth bound-
ary. Then, for 1 < q<n—2,n >3, the range of (! is closed and there exists
a bounded linear operator N* for sufficiently large t > 0 satisfies the following
properties:

(i) range (N*) C dom(O0%), N'O' = I on dom(00%),

(i) For f e L2 (), we have u = 00,N'f ® 0,0N'f,

(ili) N' = N'9, and 0, N' = N* 3},

(iv) For all f € L2 (), we have the estimates

IN“flle < el flle,

[ON* flle + 10; N* flle < Vel £

V) Iff e ker(Dt) then gthf gives the solution u; to the equation Ou, = f
of minimal uy € L2, (Q)-norm.
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(vi) If f € ker(T;), then ONtf gives the solution u; to the equation gzut =f
of minimal uy € L2 . (Q)-norm.

By Theorem 4.2(ii) and the density of C5% (Q) in W3 (), the following is
immediate.

Theorem 4.3. Let Q be an “annulus” as in Theorem 3.1 witﬁ smooth bound-

ary. If f € Cgﬁi(ﬁ) withl1 <q¢g<n-2,n>3and N'f € Cp,S2), then for any
nonnegative integer s there exist constants Cys and Ty such that

(43) IN*fllwe < Calfllwe for every t > T,
Proof. The proof is the same as in [9]. O

Using the elliptic regularization method which was used in [9], one can pass
from the a priori estimates (3.1) to actual estimates and we can prove the
following theorem:

Theorem 4.4. Let Q be an “annulus™ as in Theorem 3.1 with smooth bound-
ary. For every integer s > 0 and real t > T > 0 the weighted 0-Neumann
operator Nt is bounded from W, ,(Q) into itself for 1 <q<n—2,n2>3.

By Theorem 4.3 and the density of C3°(Q) in W3 (), the following is
immediate.

Corollary 1. Let Q be an “annulus” as in Theorem 3.1 with smooth boundary.
If f € W;’q(Q), s=0,1,2,3,... satisfies 0f =0, where 1 <g<n-—2,n>3,
then there exists u € Wy, () so that du = f on Q with estimate

lullws < Cul[ fllwe-

Theorem 4.5. Let Q be an “annulus” as in Theorem 3.1 with smooth bound-

ary. Then, for f € CJ5, (), with Of =0,1<qg<n—2,n >3, there exists

u € C® _1(Q) such that du = f.

p,q—1
Proof. The proof is the same as in [10]. O
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