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CLOSURE OPERATIONS AND THE DESCENDING

CHAIN CONDITION

Janet C. Vassilev

Abstract. In this note, we define and compare some closures which be-

have somewhat like the radical closure. Using these closures as a starting
point allows us to classify all semiprime closures on the nodal curve. Sev-

eral examples provided show how these closures can differ significantly in
the non-Noetherian setting.

1. Introduction

The importance of the radical can be seen in Hilbert’s Nullstellensatz which
illustrates the one to one correspondence between radical ideals in a polynomial
ring over and algebraically closed field with affine varieties. The radical is a
type of closure operation which the current author defined to be bounded in
[9].

Let (R,m) be a local ring. The author defined a closure operation c on the
ideals of R to be bounded if there exists an m-primary ideal J such that for all
m-primary ideals q ⊆ J , qc = J . For the rings considered in [9] and [10] the
bounded closures c also satisfy the property that a descending chain of closures
of m-primary ideals stabilizes. The radical is in fact more specialized than a
bounded closure. For Λ an indexing set, let {Iλ}λ∈Λ be a collection of ideals
with the same radical. If Iλ1

⊇ Iλ2
⊇ · · · ⊇ Iλn

⊇ · · · is a descending chain of
ideals from this set, then since they all have the same radical, they satisfy the
descending chain condition on their closures since in fact their radicals are all
equal.

We broaden the notion of bounded closures in two ways. Firstly, we suggest
the notion of I-bounded closures for a radical ideal I which is defined similarly
to the (m)-bounded we defined in [9]. Secondly, we will impose the condition
that the closures of a descending chain of ideals with radical I stabilize for
some or all radical ideals I. So although we previously used the term bounded,
maybe a more appropriate name should be I-DCC closures where I is a radical
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ideal. The radical is a closure that behaves quite differently than other famil-
iar closures such as the integral closure or tight closure. In fact, in a recent
paper [2], Epstein showed that the radical is almost never standard which is a
property that some common closure operations share on nice rings. In general,
closures which are I-DCC will not typically be standard either; however, for the
nodal curve, Morre and the author [5] have determined all the standard closure
operations and among the list are some I-DCC closures which are standard.
For a nice survey on closure operations see [1].

Although we define the new notions of I-DCC closures and I-bounded clo-
sures for radical ideals I, we, for the most part, focus on closures that are
additionally semiprime. The notion of prime operations dates back to work
by Krull [3], [4] on closure operations on the set of fractional ideals of a do-
main. In this work, he used the prime symbol to denote a closure operation
satisfying certain properties. Sakuma [8] produced further work on prime op-
erations restricted to the set of ideals of a ring. Petro deleted a condition from
those required for prime operations and called these more generalized closures
semiprime [6]. The author further studies both prime and semiprime closures
in [9] and [10] in the setting of one dimensional domains.

An outline of the paper follows. In Section 2, we recall the definitions of
both closure operations and semiprime operations and introduce the new no-
tions of I-bounded closures and I-DCC closures for radical ideals I. We also
include a few examples to illustrate the differences between these two notions.
In Section 3, we recall the lattice structure on the set of ideals of the nodal
curve k[[x, y]]/(xy) and show that (x, y)-DCC and (x, y)-bounded are equiv-
alent notions in this ring. We also prove several Lemmas to determine if a
semiprime closure c is (x, y)-bounded and classify the semiprime operations
c which are not (x, y)-bounded. In Section 4, we classify the (x, y)-bounded
semiprime operations. In Section 5, we give some examples of closures c which
are P -bounded but not Q-bounded for primes Q ⊆ P . For semiprime closures
this seems to only occur in the non-Noetherian setting.

2. Closure operations

Let R be commutative ring with ideals I, J ⊆ R. Let I 7→ Ic be an operation
on the ideals of R. We will denote the operation by c. The operation may satisfy
the following properties:

(a) c is expansive if I ⊆ Ic for all I ⊆ R.
(b) c is order preserving if when I ⊆ J , then Ic ⊆ Jc.
(c) c is idempotent if (Ic)c = Ic for all I ⊆ R.
(d) IcJc ⊆ (IJ)c for all I, J ⊆ R.

Definition 2.1. We say c is a closure operation if c satisfies (a)-(c). If a closure
operation c further satisfies (d), we call c a semiprime operation.



CLOSURE OPERATIONS AND THE DESCENDING CHAIN CONDITION 1701

We will say an ideal I ⊆ R is c-closed if Ic = I for the closure operation or
semiprime operation c. If Ic 6= I we will say that I is not c-closed. Here are a
couple of properties of closure operations that we will make use of.

Lemma 2.2. Let R be a commutative ring and c a closure operation defined
on the ideals of R. Suppose a, b ⊆ I are ideals of R.

(1) If (a ∩ b)c = I, then ac = I = bc.
(2) If ac = I, then (a + b)c = I.

Proof. These are clear by the order preservation property of closure operations.
�

Lemma 2.3. Let R be a commutative ring and c a closure operation defined on
the ideals of R. Suppose a, b are ideals of R which are incomparable. Suppose
I ⊆ a ∩ b such that Ic = a. Then a + b ⊆ bc.

Proof. Since I ⊆ b then by the order preservation property a = Ic ⊆ bc.
However, b ⊆ bc by the expansive property of closure operations so a + b ⊆
bc. �

The notion of bounded closure operation, was essential in the classification
of semiprime operations on both k[[t]] and k[[t2, t3]] in [9].

Definition 2.4. A closure operation c is bounded if for each maximal ideal
m of R, there exists an m-primary ideal J such that for all m-primary ideals
I ⊆ J , Ic = J .

In a local one-dimensional domain, if c is a bounded closure, then since
there exists an m-primary ideal J such that for all m-primary ideals I ⊆ J ,
then Ic = J . Since (0) ⊆ I for all I ⊆ R, (0)c ⊆ J . So there are only two
possibilities of what the closure of (0) may be. Either (0)c = (0) or (0)c = J .

However if R is a local commutative ring which is not a domain or which has
dimension greater than 1 and c is a bounded closure operation on the ideals of
R, what can we say about the closures of the possibly many ideals which are
not m-primary? One possible way to extend the definition of bounded closures
is to define a similar notion in terms of P -primary ideals for a prime P . For
example, we could define a closure operation c on the set of ideals of R to
be weakly-P -bounded if there exists a P -primary ideal Q such that for all P -
primary ideals q ⊆ Q, qc = Qc. Similarly we could say a closure c is P -bounded
if there exists a P -primary ideal Q such that for all P -primary ideals q ⊆ Q,
qc = Q. However, the following example, seems to indicate that this notion is
not quite strong enough.
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Example 2.5. Let R = k[[x, y]]/(xy). The primes of R are given by the
following partially ordered set.

(x, y)

(x) (y)

Suppose I → Ic is given by Ac = (x, y) for all (x, y)-primary ideals A and
(xn)c = (xn) for all n ∈ N and (ym)c = (ym) for all m ∈ N. Note that J ⊆ Jc

for all ideals J in R. Also, for J ⊆ I ideals, Jc ⊆ Ic. Lastly, Ic = (Ic)c for all
ideals I of R.

The only (x)-primary ideal is (x) itself. This is because (xn) = (xn, y)∩ (x)
is a primary decomposition of (xn). Similarly, (y) is the only (y)-primary
ideal. This closure is (x, y)-bounded, (x)-bounded and (y)-bounded by our
“definitions” above.

However, the ideals (xn) for n > 1 and (ym) for m > 1 don’t satisfy the
descending chain condition on the closures like their primary counterparts.

Instead we will extend the notion of boundedness by an examination of the
closures of ideals with a common radical.

Definition 2.6. Let (R,m) be a local ring and c be a closure operation defined
on R. Suppose I is a radical ideal. We say that c is weakly-I-bounded if there
exists some ideal J with

√
J = I such that for all ideals A ⊆ J with

√
A = I,

Ac = Jc. We say c is I-bounded if there exists some ideal J with
√
J = I such

that for all ideals A ⊆ J with
√
A = I, Ac = J .

With our new definition, we will see that the closure c in Example 2.5 is
actually now neither (x)-bounded nor (y)-bounded. Let A be a radical ideal,
I be a set of ideals and IA be the set of all ideals with radical A.

The following two examples show that even with this new definition of a
closure being I-bounded for radical ideals we may still have a descending chain
of ideals all with radical I and the closures in the chain may not stabilize:

Example 2.7. Let R = k[[x, y]]. Note I = (xy) is a radical ideal. Define a
closure c on the R such that for ideals J with radical (xy), if J ⊆ (x2y), then
Jc = (x2y), if J ⊇ (x2y), then Jc = J and if J is incomparable to (x2y), then
Jc = (x2y) + J . Consider the descending chain of ideals

(xy) ⊇ (x2y, xy2) ⊇ (x2y, xy3) ⊇ · · · (x2y, xyr) ⊇ · · · .

Then c is an (xy)-bounded closure. However, it is not an (xy)-DCC closure.

Example 2.8. Let S = k[x1, x2, . . . , xn, . . .] and m = (x1, x2, . . . , xn, . . .). Set
R = Sm. Define the closure c on the ideals of R satisfying Jc = m2 for all
J ⊆ m2 and Jc = J for all other J . c is an m-bounded closure. However, c
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does not satisfy the descending chain condition on the closures of m-primary
ideals. Denote the ideal Pn = (xn, xn+1, . . .). Then

m ⊇ (x1)2 + P2 ⊇ (x1, x2)2 + P3 ⊇ · · · ⊇ (x1, . . . , xn−1)2 + Pn ⊇ · · ·

is a descending chain of m-primary ideals whose closures do not stabilize.

Both examples indicate that I-bounded may not be the best generalization
for closures which behave like the radical. Of course, the radical ideal that we
picked in the first example is not prime and the ring in the second example is
not Noetherian. It may be the case that a weakly I-bounded closure satisfies
the descending chain condition on descending chains of closures of ideals with
radical P , a prime ideal in a Noetherian ring. In fact, we make the following
definition.

Definition 2.9. Let R be a commutative ring and c a closure operation defined
on the ideals of R. Let I be a radical ideal of R. We will say that c is an I-DCC
closure if for any descending chain of ideals

J1 ⊇ J2 ⊇ · · · ⊇ Jn ⊇ · · ·

with
√
Jn = I, then

Jc1 ⊇ Jc2 ⊇ · · · ⊇ Jcn ⊇ · · ·
stabilizes. In other words there exists an n such that for all m ≥ n Jcm = Jcn.

Proposition 2.10. Let R be a commutative ring and c a closure operation
defined on the ideals of R. Let I be a radical ideal of R. If c is I-DCC and√
Jc = I for all J with

√
J = I, then c is I-bounded.

Proof. First we claim that there are elements a of the set of ideals with radical
I which are c-closed and minimal with respect to inclusion. Suppose there is a
chain of ideals with radical I:

J1 ⊇ J2 ⊇ · · · ⊇ Jn ⊇ · · ·

such that for each n ∈ N, Jn is c-closed. Since c is I-DCC then for some n ∈ N,
for every m ≥ n, Jm = Jcm = Jcn = Jn. In particular, if chains Ci stabilize at
the c-closed ideals ai, then {ai | i ∈ I} cannot contain an infinite descending
chain. So in particular the set of c-closed ideals with radical I has minimal
elements. Suppose a and b are minimal c-closed elements with radical I. Note
that

a ∩ b ⊆ (a ∩ b)c = ac ∩ bc = a ∩ b.

However since a and b are minimal c-closed elements with radical I and a ∩ b
is c-closed, has radical I and is properly contained in a and b implying there
is only one minimal element. Thus for any minimal c-closed element a and all
ideals J ⊆ a with

√
J = I then Jc = a. This implies that c is I-bounded. �

One particular descending chain of ideals that we will consider is a descend-
ing chain of powers of an ideal I. If c is a semiprime operation and for some
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ideal I and all natural numbers n, (In)c = Ik for some k ≤ n, then we can
precisely describe what c behaves like for all natural numbers.

Proposition 2.11. Let R be a commutative ring and c a semiprime operation
defined on the ideals of R. Let I be an ideal of R. Suppose for all natural
numbers n (In)c = Ik for some k ≤ n for some semiprime operation c. Then
either c is the identity on In or c is defined as follows:

(In)c =

{
In for all 1 ≤ n ≤ m

Im for all n > m.

Proof. We know that for all natural numbers n, (In)c = Ik for some k ≤ n.
Suppose for some particular n, (In)c = Im for m < n. Note that for all
m ≤ r ≤ n,

Im = (In)c ⊆ (Ir)c ⊆ (Im)c = Im,

where the first and second containments follow from the extensive property
of closure operations and the last equality follows from idempotence. Thus
(Ir)c = Im for all m ≤ r ≤ n. We use induction to show that (Ir)c = Im for
all r ≥ n. Suppose that (Ir)c = Im for some r > n. Then

Im+1 = (Ir)cI ⊆ (Ir+1)c ⊆ (Im)c = Im.

Since (Im+1)c = Im, then (Ir+1)c = Im concluding our induction argument.
Now suppose that (Ij)c = Ii for some i < j ≤ m. Then Im−j+i = (Ij)cIm−j ⊆
(Im)c = Im is a contradiction since Im−j+i * Im. Thus (Ij)c = Ij for all
1 ≤ j ≤ m. If there exists no such m with (In)c = Im for m < n, then
(In)c = In for all n ≥ 1 indicating that c is the identity on In. �

For the ring R = k[[x, y]]/(xy), the ideals (x) and (y) are both radical ideals.
The only ideals in R which have radical (x) are of the form (xr) = (x)r and the
only ideals which have radical (y) are of the form (ys) = (y)s. The following is
a corollary of Proposition 2.11:

Corollary 2.12. Let R = k[[x, y]]/(xy) and c is a semiprime operation.

(1) If c is (x)-bounded, then there exists an natural number m such that

(xr)c =

{
(xr) for 1 ≤ r ≤ m

(xm) for r > m.

(2) If c is (y)-bounded, then there exists an natural number n such that

(ys)c =

{
(ys) for 1 ≤ s ≤ n

(yn) for s > n.
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3. Classifying closures on the nodal curve

Using these new definitions, we would like to classify the semiprime opera-
tions on the ring R = k[[x, y]]/(xy). In [7, Theorem 1], Ran showed that all the
(x, y)-primary ideals of R = k[[x, y]]/(xy) are either of the form (xi, yj) which
we will denote Pi j or (xi+ayj) which we will denote Ai j(a) with a 6= 0. (Note,
this notation differs from Ran’s notation as he was grouping the ideals in terms
of colength m.) Clearly Pi+1 j+1 ⊆ Ai j(a) ⊆ Pi j and Ai j(a) + Ai j(b) = Pi j

and Ai j(a)
⋂
Ai j(b) = Pi+1 j+1 for a 6= b, both not 0. Also,⋂

i≥1

Pi j = (yj),
⋂
j≥1

Pi j = (xi).

Hence, a portion of the lattice of ideals is:

P1 1

P1 2 A11(a) P2 1

P1 3 A12(a) P2 2 A2 1(a) P3 1

(x) (y)

(x2) (y2)

(0)

where a 6= 0 and the node at Ai j(a) = (xi+ayj) has k\{0} := k× incomparable
ideals.

We will show that a semiprime operation c is weakly (x, y)-bounded if and
only if c is weakly (x)-bounded and weakly (y)-bounded. For the nodal curve
we will see that the weak (x, y)-boundedness of c is equivalent to c being (x, y)-
DCC.

Proposition 3.1. Let R = k[[x, y]]/(xy). Suppose a closure operation c defined
on the ideals of R is weakly (x, y)-bounded. Then c is (x, y)-DCC.

Proof. Since c is (x, y)-bounded there exists an (x, y)-primary ideal J such that
for all (x, y)-primary ideals I ⊆ J , Ic = Jc. There are three possibilities for Jc.
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Either Jc = R, Jc = Pi j or Jc = Ai j(a) for some i, j ∈ N and some a ∈ k×.
In either of these cases if we have a chain of (x, y)-primary ideals

J1 ⊇ J2 ⊇ · · · ⊇ Jn ⊇ · · ·

such that Jcn = J = Jc for some n ≥ 1, then clearly the chain terminates since
for m ≥ n Jcm ⊆ Jc which implies Jcm = J = Jc. Suppose

J1 ⊇ J2 ⊇ · · · ⊇ Jn ⊇ · · ·

is a chain of (x, y)-primary ideals in R such that Ji are not comparable to J
for i ≥ n. We need to show that the chain of closures

Jc1 ⊇ Jc2 ⊇ · · · ⊇ Jcn ⊇ · · ·

terminate. First consider the chain

J ∩ J1 ⊇ J ∩ J2 ⊇ · · · ⊇ J ∩ Jn ⊇ · · · .

All the ideals in this chain are contained in J so the chain of closures terminates
at Jc. Now since J ∩ Ji ⊆ Ji for all i, then by Lemma 2.2 Jc = (J ∩ Ji)c ⊆ Jci .
So in fact by Lemma 2.3 the chain of closures

Jc1 ⊇ Jc2 ⊇ · · · ⊇ Jcn ⊇ · · ·

is

(J + J1)c ⊇ (J + J2)c ⊇ · · · ⊇ (J + Jn)c ⊇ · · ·
all of which are comparable to J . Since any Jc listed above is of finite length
then the chain must terminate. �

Hence, all semiprime operations which are weakly (x, y)-bounded will be
(x, y)-DCC. So this is why we focus on the weakly (x, y)-bounded closures
from this point on.

Lemma 3.2. Let R = k[[x, y]]/(xy). Suppose a closure operation c defined on
the ideals of R is weakly (x)-bounded. Then there exists an n ∈ N such that for
every r ≥ 1 and m ≥ n, Pc

m r = Pc
n r.

Proof. Suppose c is weakly (x)-bounded. Then there exists an n ≥ 1 such that
for all m ≥ n, (xn)c = (xm)c. Consider the chain

Pn r = (xn) + (yr) ⊆ (xn)c + (yr) = (xm)c + (yr) ⊆ Pc
m r ⊆ Pc

n r.

This implies that for every r ≥ 1 and m ≥ n, Pc
m r = Pc

n r. �

Lemma 3.3. Let R = k[[x, y]]/(xy). Suppose a closure operation c defined on
the ideals of R is weakly (y)-bounded. Then there exists an n ∈ N such that for
every r ≥ 1 and m ≥ n, Pc

rm = Pc
r n.

Proof. Exchanging the roles of (x) and (y) in the proof of Lemma 3.2 we obtain
for every r ≥ 1 and m ≥ n, Pc

rm = Pc
r n. �
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Proposition 3.4. Let R = k[[x, y]]/(xy). Suppose a closure operation c defined
on the ideals of R is both weakly-(x)-bounded and weakly-(y)-bounded. Then c
is weakly-(x, y)-bounded and if the there is an (x, y)-primary ideal J such that
J = Ic for all I ⊆ J , then c is (x, y)-bounded.

Proof. Since c is weakly-(x)-bounded by Lemma 3.2 there exists an n ∈ N such
that for all m ≥ n Pc

m r = Pc
n r. Since c is weakly-(y)-bounded by Lemma 3.3

there exists an s ∈ N such that for all t ≥ s Pc
r t = Pc

r s. Putting these together
we see for all m ≥ n and all t ≥ s Pc

m t = Pc
n s. Note that for any ideal I such

that Pmt ⊆ I ⊆ Pn s, I
c = Pc

n s. Thus c is weakly (x, y)-bounded. If Pc
n s is

an (x, y)-primary ideal, then c is (x, y)-bounded. �

Corollary 3.5. Let R = k[[x, y]]/(xy). Suppose a closure operation c defined
on the ideals of R is both (x)-bounded and (y)-bounded. Then c is weakly-(x, y)-
bounded and (x, y)-bounded if there exists some (x, y)-primary ideal J such that
for all (x, y)-primary I ⊆ J Ic = J .

Proof. Since I-bounded closures are weakly-I-bounded for all radical ideals I,
the proof follows. �

We saw above that Example 2.5 exhibits a closure operation c which is (x, y)-
bounded on R but not (x)-bounded or (y)-bounded. However, if c is a bounded
semiprime operation or even a weakly bounded semiprime operation, then c is
both weakly (x)-bounded and weakly (y)-bounded.

Proposition 3.6. Let R = k[[x, y]]/(xy). Suppose a closure operation c is a
weakly-(x, y)-bounded semiprime operation. Then c is both weakly-(x)-bounded
and weakly-(y)-bounded.

Proof. Since c is weakly-(x, y)-bounded then there exists an (x, y)-primary ideal
J such that for all (x, y)-primary ideals I ⊆ J , Ic = Jc. J is either of the form
Ai j(a) or Pi j . Note that (xr)Ai j = (xr)Pi j = (xr)J = (xr+i) for all r ∈ N.
For either such J for m > i and n > j and any nonzero b ∈ k,

(xr+i) = (xr)J ⊆ (xr)Jc ⊆ ((xr)J)c = (xr+m)c ⊆ (xr+i)c

which implies that (xr+i)c = (xr+m)c for all m ≥ i. Thus, c is a weakly-(x)-
bounded operation.

We can use a similar argument to see that c is a weakly-(y)-bounded oper-
ation. �

We have seen that a semiprime operation on R = k[[x, y]]/(xy) is weakly
(x, y)-bounded if and only if it is both weakly (x)-bounded and weakly (y)-
bounded. Next we provide several lemmas which we can use to determine if a
semiprime operation on R is weakly P -bounded for one of the primes P ⊆ R
since the only nonzero radical ideals of R are prime.

Lemma 3.7. Let R = k[[x, y]]/(xy). Let c be a semiprime operation defined

on the ideals of R and J be a radical ideal such that
√
Jn = J for all n ≥ 1. If
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(Jn)c = (Jn+1)c for some n, then c is a weakly-J-bounded semiprime operation.
If (Jn)c is an ideal with radical J , then c is J-bounded.

Proof. Suppose (Jn)c = (Jn+1)c = K for some ideal K ⊇ Jn for some n. We

need to show that any ideal L ⊆ K satisfying
√
L =

√
J has the property

Lc = K. Note that J is either (1) an (x, y)-primary ideal, (2) (xi) for some
i ≥ 1 or (3) (yj) for some j ≥ 1. (1) If J is (x, y)-primary, then J = Ai j(a)
or J = Pi j for some i, j ≥ 1 and a ∈ k \ {0}. Since Ai j(a)J = J2 for some
a ∈ k \ {0} then

Jn+2 ⊆ Jn+1 = Ai j(a)Jn

⊆ Ai j(a)(Jn)c = Ai j(a)(Jn+1)c

⊆ (Ai j(a)Jn+1)c = (Jn+2)c.

Applying c everywhere, we see that (Jn+2)c = (Jn+1)c = K. By a similar
argument, we see that (Jn+m)c = K for all m ≥ 0. If Jn ⊆ L ⊆ K, then
applying c we see that (Jn)c = Lc = K. Note that as J is an (x, y)-primary,
for any (x, y)-primary ideal L ⊆ Jn there exist positive integers r ≥ s ≥ n
with Jr ⊆ L ⊆ Js. As (Jr)c = K for all r ≥ n, then Lc = K. Clearly, if K is
(x, y)-primary, then c is (x, y)-bounded.

(2) Replacing (x, y)-primary with any ideal with radical (x) and Ai j(a)
with (xi) in (1) above we see that c is weakly (x)-bounded and (x)-bounded if
K = (xm) for some m ≥ 1.

(3) Replacing (x, y)-primary with any ideal with radical (y) and Ai j(a) with
(yj) in (1) above we see that c is weakly (y)-bounded and (y)-bounded if
K = (yn) for some n ≥ 1. �

Lemma 3.8. Let R = k[[x, y]]/(xy). Suppose a semiprime operation c defined
on the ideals of R has the property that Pc

i+1 j = Pc
i j for some i, j ∈ N. Then

c is a weakly-(x)-bounded semiprime operation.

Proof. If Pc
i+1 j = Pc

i j for some i ≥ 1, then for all r ≥ 1

(xi+r) = (xr)Pi j ⊆ (xr)Pc
i j = (xr)Pc

i+1 j ⊆ (xi+r+1)c ⊆ (xi+r)c

implying that (xi+r)c = (xr+i+1)c for all r ≥ 1 or (xi+1)c = (xi+r)c for all
r ≥ 1. In particular (xi+1)c = (x2i+2)c = ((xi+1)2)c. By Lemma 3.7 we
conclude that c is weakly-(x)-bounded. �

Lemma 3.9. Let R = k[[x, y]]/(xy). Suppose a semiprime operation c defined
on the ideals of R has the property that Pc

i j+1 = Pc
i j for some i, j ∈ N. Then

c is a weakly-(y)-bounded semiprime operation.

Proof. Reversing the roles of (x) and (y) in the proof of Lemma 3.8 we obtain
the result. �

The preceding two lemmas give us criteria to determine if a semiprime op-
eration is weakly-(x)-bounded or weakly-(y)-bounded. We now prove several
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lemmas that will give us criteria for a semiprime operation to be weakly-(x, y)-
bounded

Lemma 3.10. Let R = k[[x, y]]/(xy). Then if c is a semiprime operation
defined on the ideals of R satisfying Pc

i j = Pc
i+1 j+1 for some i, j ∈ N, then

c is a weakly-(x, y)-bounded semiprime operation. If in addition Pc
i j is (x, y)-

primary, then c is (x, y)-bounded.

Proof. Since Pc
i j = Pc

i+1 j+1 implies also that

Pc
i+1 j = Pc

i j = Pc
i j+1

then by Lemmas 3.8 and 3.9, c is both weakly (x)-bounded and weakly (y)-
bounded. Now by Proposition 3.4 c is weakly (x, y)-bounded. �

Lemma 3.11. Let R = k[[x, y]]/(xy). Suppose a semiprime operation c defined
on the ideals of R has the property that Pc

i+1 j = Pi j = Pc
i j+1 for some integers

i and j. Then c is an (x, y)-bounded semiprime operation.

Proof. Since Pc
i+1 j = Pi j = Pc

i j+1 then by Lemmas 3.8 and 3.9, c is both
weakly (x)-bounded and weakly (y)-bounded. Now by Proposition 3.4, c is
(x, y)-bounded. �

Lemma 3.12. Let R = k[[x, y]]/(xy). Suppose a semiprime operation c defined
on the ideals of R has the property that (xm)c = Pc

mn for some integers m and
n. Then c is a weakly (y)-bounded semiprime operation. If (xm)c = Pc

(m−1)n

for some integers m and n, then c is a weakly (x, y)-bounded semiprime oper-
ation.

Proof. If (xm)c = Pmn for some integers m and n, then for all r ≥ n, Pmn =
(xm)c + (yr) ⊆ Pc

m r ⊆ Pc
mn which implies that Pc

mn = Pc
m r for all r ≥ n.

Thus (yn+1) = (y)Pmn ⊆ (y)Pc
mn = (y)Pc

m r ⊆ (yr+1)c ⊆ (yn+1)c for all
r ≥ n implying that c is weakly (y)-bounded.

If (xm)c = Pc
(m−1)n for some integers m and n, then Pc

(m−1)n = (xm)c +

(yn)c ⊆ Pc
mn ⊆ Pc

(m−1)n implies that c is weakly (x)-bounded by Lemma

3.8. As c is both weakly (x)-bounded and weakly (y)-bounded then c is also
(x, y)-bounded by Proposition 3.4. �

Lemma 3.13. Let R = k[[x, y]]/(xy). Suppose a semiprime operation c defined
on the ideals of R has the property that (yn)c = Pc

mn for some integers m and
n. Then c is a weakly (x)-bounded semiprime operation. If (yn)c = Pc

m (n−1) for

some integers m and n, then c is a weakly (x, y)-bounded semiprime operation.

Proof. Exchanging the roles of (x) and (y) in the proof of Lemma 3.12 we
obtain the result. �

Lemma 3.14. Let R = k[[x, y]]/(xy). Suppose a semiprime operation c is
defined on the ideals of R has the property that Pc

i j = Ai−1 j−1(a) for some
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i, j ∈ N and some nonzero a ∈ k. Then c is an (x, y)-bounded semiprime
operation.

Proof. Consider the chain of containments

P(2i−1) (2j−1) = Pi jAi−1 j−1(a) = Pi jP
c
i j ⊆ (P2

i j)
c = Pc

2i 2j ⊆ Pc
(2i−1) (2j−1).

Applying c to the chain, we see that Pc
2i 2j = Pc

(2i−1) (2j−1). By Lemma 3.10,

we see that as c is an (x, y)-bounded semiprime operation. �

In fact, even if c is a semiprime operation which is (x)-bounded or (y)-
bounded we can specifically determine which monomial (x, y)-primary ideals
are c-closed.

Proposition 3.15. Let R = k[[x, y]]/(xy). Suppose c is a semiprime operation
defined on the ideals of R.

(1) If c is (x)-bounded but not weakly (y)-bounded, then there exists a natural
number m such that Pc

r t = Pr t for all 1 ≤ r ≤ m− 1 and all t ∈ N.
(2) If c is (y)-bounded but not weakly (x)-bounded, then there exists a natural

number n such that Pc
t s = Pt s for all 1 ≤ s ≤ n− 1 and all t ∈ N.

(3) If c is both (x)-bounded and (y)-bounded, then there exist natural numbers
m and n such that Pc

r s = Pr s for all 1 ≤ r ≤ m−1 and all 1 ≤ s ≤ n−1.

Proof. (1) Suppose c is (x)-bounded then by Corollary 2.12

(xr)c =

{
(xr) for 1 ≤ r ≤ m

(xm) for r > m.

Note that either (ys)c = (yt) for some t ≤ s, (ys)c = Pi t for some i and t ≤ s
or (ys)c = Ai t(a) for some i, a ∈ k× and t < s.

First suppose that (ys)c = (yt). Then for 1 ≤ r ≤ m,

Pr t = (xr) + (yt) = (xr)c + (ys)c ⊆ Pc
r s ⊆ Pc

r t

or Pc
r t = Pc

r s. Note that since, c is not weakly (y)-bounded then Lemma 3.9
t = s.

Suppose now that (ys)c = Pi t, Pi t ⊆ (ys)c ⊆ Pc
i s ⊆ Pc

i t or Pc
r t = Pc

r s.
Again Lemma 3.9 implies that t = s.

Note that (ys)c 6= Ai t(a) for t < s. Otherwise (ys)c = Ai t(a) ⊇ Pi+1 t+1 ⊇
(yt+1) ⊇ (ys) implying Ai t(a)c = Pc

i+1 t+1. However, by Lemma 3.14 this
would imply that c is weakly (x, y)-bounded and hence weakly (y)-bounded
which is a contradiction.

Thus (ys)c = (ys) for all s or (ys)c = Pi s for all s and some i. Consider
Pc
r s for 1 ≤ r < m. Suppose Pc

r s = Pi s for some i ≤ r ≤ m− 1 then

(xi+1) = (x)Pi s = (x)Pc
r s ⊆ (xr+1)c ⊆ (xi+1)c = (xi+1)

or (xr+1)c = (xi+1) which implies that r = i. Thus for all 1 ≤ r ≤ m − 1
Pc
r s = Pr s.
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(2) The proof is the same as (1) exchanging the roles of (x) and (y) and
replacing Lemma 3.9 with Lemma 3.8.

(3) Suppose c is both (x)-bounded and (y)-bounded, then there exist natural
numbers m and n such that

(xr)c =

{
(xr) if 1 ≤ r ≤ m

(xm) if r > m
and (ys)c =

{
(ys) if 1 ≤ s ≤ n

(ys)c = (yn) if s > n.

If Pc
r s = Pi j for some 1 ≤ i ≤ r < m and 1 ≤ j ≤ s < n,

(xi+1) = (x)Pc
r s ⊆ (xr+1)c ⊆ (xi+1)c = (xi+1)

and

(yj+1) = (y)Pc
r s ⊆ (ys+1)c ⊆ (yj+1)c = (yj+1)

imply that i = r and j = s. �

We illustrate what we have obtained in this proposition through some pic-
tures:

P1 1

Pm−1 1

(x) Pm 1

(xm−1)

(xm)

88

If c is (x)-bounded but not (y)-bounded, then the ideals contained in the lattice
of ideals of R inside the upper parallelogram are all c-closed. We cannot deter-
mine the closures of the ideals between (xm) and Pm 1 which are indicated by
the dotted arrow and the circled ideals. However, by Lemma 3.2 we do know
all the ideals lying below the chain of ideals between (xm) and Pm 1 are not
c-closed.

P1 1

P1n−1

P1n (y)

(yn−1)

(yn)

ff

If c is (y)-bounded but not (x)-bounded, then the ideals contained in the lat-
tice of ideals of R inside the upper parallelogram are all c-closed. We cannot
determine the closures of the ideals between (yn) and P1n which are indicated
by the dotted arrow and the circled ideals. However, by Lemma 3.3 we do
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know all the ideals lying below the chain of ideals between (yn) and P1n are
not c-closed.

P1 1

P1n−1 Pm−1 1

P1n Pm−1n−1 Pm 1

Pm−1n

ff

Pmn−1

88

(x) Pmn

gg 77

(y)

(xm−1) (yn−1)

(xm) (yn)

If c is both (x)- and (y)-bounded, then the ideals contained in the lattice of
ideals of R inside the top parallelogram are all c-closed. We cannot determine
the closures of the ideals between (xm) and Pm 1 and the ideals between (yn)
and P1n which are indicated by the dotted arrow and the circled ideals. How-
ever, by Lemmas 3.2 and 3.3 we do know all the ideals lying below the chain
of ideals between (xm) and Pm 1, lying below the chain of ideals between (yn)
and P1n and inside Pmn are not c-closed.

We can also determine the closures of the ideals in the “border” regions of
the above diagrams. In particular, the following proposition determines the
closures of the chain of ideals between (yr) and Pn r for each r.

Proposition 3.16. Let R=k[[x, y]]/(xy). Suppose a semiprime operation c de-

fined on the ideals of R is (x)-bounded with (xr)c =

{
(xr) for 1 ≤ r ≤ n

(xr)c = (xn) for r > n

but not weakly (y)-bounded. Then precisely one of the following holds:

(1) Pc
m r = Pn r for every r ≥ 1 and m ≥ n.

(2) Pc
m r = Pn r for every r > i and m ≥ n, and Pc

m r = Pn−1 r for every
1 ≤ r ≤ i and m ≥ n− 1.

Proof. Since (xr)c =

{
(xr) for 1 ≤ r ≤ n

(xn) for r > n
, we know by Lemma 3.2 that Pc

m r =

Pc
n r for every r ≥ 1 and m ≥ n. To prove this proposition we need only de-

termine Pc
n r for each r. Suppose for some r ≥ 1, Pc

n r ) Pn r, then since
c is not (y)-bounded then Pc

n r 6= An−1 r−1(a) for any a by Lemma 3.14 and
Pc
n r 6= Pn r−1 by Lemma 3.9. The only possibility is that Pc

n r = Pn−1 r

since Pn−1 r is c-closed by Proposition 3.15(1). We need to determine Pc
n j for

1 ≤ j < r. Since Pn j ⊇ Pn r then Pc
n j ⊇ Pn−1 r. But Pn−1 r+Pn j = Pn−1 j .

Thus Pc
n j ⊇ Pn−1 j and since Pn−1 j is c-closed, then Pc

n j = Pn−1 j for all
1 ≤ j < r. Thus either Pc

m r = Pn r for every r ≥ 1 and m ≥ n or Pc
m r = Pn r
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for every r < i and m ≥ n, and Pc
m r = Pn−1 r for every 1 ≤ r ≤ i and

m ≥ n− 1. �

The next proposition determines the closures of the chain of ideals between
(xr) and Pr n for each r.

Proposition 3.17. Let R=k[[x, y]]/(xy). Suppose a semiprime operation c de-

fined on the ideals of R is (y)-bounded with (yr)c =

{
(yr) for 1 ≤ r ≤ n

(yr)c = (yn) for r > n

but not weakly (x)-bounded. Then precisely one of the following holds:

(1) Pc
rm = Pr n for every r ≥ 1 and m ≥ n.

(2) Pc
rm = Pr n for every r > i and m ≥ n, and Pc

rm = Pr n−1 for every
1 ≤ r ≤ i and m ≥ n− 1.

Proof. The proof is the same as Proposition 3.16 replacing the roles of x and y.
Hence, instead of using Lemma 3.9 we use Lemma 3.8 and we use Proposition
3.15(2) instead of Proposition 3.15(1). �

Lemma 3.18. Let R = k[[x, y]]/(xy) and c be a semiprime operation.

(1) If c is not weakly (x)-bounded, then either:
(a) (xr)c = (xr) for all natural numbers r,
(b) there exists a natural number n such that either:

(i) (xr)c = Pr n for all natural numbers r or
(ii) there exists j ∈ N ∪ {∞} such that

(xr)c =

{
Pr n−1 for 1 ≤ r ≤ j

Pr n for all r > j.

(2) If c is not weakly (y)-bounded, then either:
(a) (ys)c = (ys) for all natural numbers s,
(b) there exists a natural number m such that either:

(i) (ys)c = Pms for all natural numbers s or
(ii) there exists i ∈ N ∪ {∞} such that

(ys)c =

{
Pm−1 s for 1 ≤ s ≤ i

Pms for all s > i.

Proof. We will exhibit a proof for (1) and note that the same proof works for
(2) replacing the roles of x and y.

Suppose first that (xr)c = (xt) for some t < r. This implies that (xi)c = (xt)
for all t ≤ i ≤ r. Consider the chain

(xt+1) = (x)(xi)c ⊆ (xi+1)c ⊆ (xt+1)c

and the fact that (xt+1)c = (xt). We can now conclude that (xt) = (xs+1)c.
Thus (xt) = (xi)c for all i ≥ t by induction. However, this contradicts the fact
that c was not weakly (x)-bounded. Thus (xr)c = (xr) for all natural numbers
r.
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Now suppose that (xr)c = Pt n for some natural number n and some t < r.
Then

Pt n ⊆ (xi)c ⊆ Pc
i n ⊆ Pc

t n

for all t ≤ i ≤ r which implies in particular that Pc
t n = Pc

t+1n. Using Lemma
3.8, we conclude that c is weakly (x)-bounded. However, this contradicts our
assumption that c was not weakly (x)-bounded so (xr)c = Pr n for some natural
number n.

For all t < r, we observe that Pt n = (xt) + Pr n ⊆ (xt)c ⊆ Pc
t n which

implies that Pc
t n = (xt)c for t < r. Again by induction we can conclude that

(xr)c = Pc
r n for all r ≥ t. Observe that the following chain

Pc
rm = (xr)c ⊆ Pc

r+1n ⊆ Pc
r n

implies that Pc
r n = Pc

r+1n. Lemma 3.9 implies that c is weakly (y)-bounded.
Since c is not weakly (x)-bounded then Lemma 3.12 implies (yn)c 6= Pc

i n for
any natural numbers i or n. Thus for every natural number n, (yn)c = (yi)
for some 1 ≤ i ≤ n which implies that c is (y)-bounded by Corollary 2.12.
We can now conclude that Pc

r s = Pr s for all natural numbers r and 1 ≤ s ≤
n − 1 by Proposition 3.15. Finally, we conclude that either (xr)c = Pr n for
all natural numbers r or that there exists j ∈ N ∪ {∞} such that (xr)c ={
Pr n−1 for 1 ≤ r ≤ j

Pr n for r > j
by Proposition 3.17. �

Lemma 3.19. Let R = k[[x, y]]/(xy) and c be a semiprime operation.

(1) If Ai j(a)c = Pi j for some a ∈ k\{0} and i, j ∈ N, then Amn(b)c = Pc
mn

for all b ∈ k \ {0} and all m ≥ i + 1 and n ≥ j + 1.
(2) If Ai j(a)c = Ai j(a) for some a ∈ k \ {0} and i, j ∈ N, then Amn(b)c =

Amn(b) for all b ∈ k \ {0} and all m ≤ i− 1 and n ≤ j − 1.

Proof. (1) Since Ai j(a)Ar s(ba
−1) = A(i+r) (j+s)(b) and

P(i+r) (j+s) ⊆ Pi jAr s(ba
−1)c ⊆ Ai j(a)cAr s(ba

−1)c

⊆ A(i+r) (j+s)(b)
c ⊆ Pc

(i+r) (j+s)

for all r, s ≥ 1, we see that A(i+r) (j+s)(b)
c = Pc

(i+r) (j+s) for all r, s ≥ 1.

(2) Note that Ar s(b)Ai−r j−s(b
−1a) = Ai j(a) and Ar s(b)

cAi−r j−s(b
−1a)c ⊆

Ai j(a)c = Ai j(a). If Pr s(b) ⊆ Ar s(b)
c or Pi−r j−s(b

−1a) ⊆ Ai−r j−s(b
−1(a)c

then Pi j ⊆ Ar s(b)
cAi−r j−s(b

−1a)c ⊆ Ai j(a) gives a contradiction. Thus for
r < i and s < j Ar s(b)

c = Ar s(b). �

To illustrate the previous lemma in the unbounded case, observe the follow-
ing diagram where each arrow indicates the closure of the ideal at the base of
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the arrow and the boxed ideals represent |k×| ideals:

Pmn

��

Amn(a)

OO

P(m+1) (n+1)

��

P(m+1) (n+2)

��
A(m+1) (n+1)(b)

OO

P(m+2) (n+1)

��

P(m+1) (n+3)

��
A(m+1) (n+2)(b)

OO

P(m+2) (n+2)

��
A(m+2) (n+1)(b)

OO

P(m+3) (n+1)

��

There may be several incomparable ideals Ari si(ai) satisfying the property
Ari si(ai)

c = Pri si and every ideal Amn(b) containing each Ari si(ai) is c-closed.
The shaded region in the following picture illustrates a possible region of the
lattice of ideals where the ideals Ai = Ari si(ai) are not c-closed.

R

A1

A2 A3

A4

A5

As we can see from the illustration and Lemma 3.19, once the closure of an
ideal Ai j(a) is Pi j , all ideals Ar s(b) will have closure containing Pr s for r > i
and s > j. We state it this way because of the possibility that the closure may
be (x, y)-bounded, (x)-bounded or (y)-bounded. To describe the ideals Ai j(a)
such that Pi j ⊆ Ai j(a)c we will use a subset

T = {(r, s, a) ∈ N2 × k× | Pr s ⊆ Ar s(a)c}.

As observed in the illustration, the set S = {Ai j(a) | (i, j, a) ∈ T} will have
maximal elements. The set T ⊆ N2× k× also satisfies the property that for all
(r, s, a) /∈ T then (m,n, b) /∈ T for all m < r, n < s and all b ∈ k× which is the
second statement proved in Lemma 3.19.

Proposition 3.20. Let R = k[[x, y]]/(xy) and c be a semiprime operation. Let
T ⊆ N2 × k× satisfy the property that for all (r, s, a) /∈ T . Then (m,n, b) /∈ T
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for all m < r, n < s and all b ∈ k×. Let m,n ∈ N and i, j ∈ Z≥0∪{∞}. If c is
not weakly (x, y)-bounded, then c is either the identity or one of the following:

(1) c = c(∞,∞, T ) where Ic = I for all monomial ideals I of R and

Ar s(a)c =

{
Ar s(a) for all (r, s, a) /∈ T

Pr s for all (r, s, a) ∈ T.

(2) c = c(m,∞(j), T ) where (0)c = (0), (ys)c = (ys) for all s ∈ N,

(xr)c =

{
(xr) for r ≤ m

(xm) for r > m,

Pc
r s =


Pr s for 1 ≤ r ≤ m− 1 and all s

P(m−1) s for r > m− 1 and all 1 ≤ s ≤ j if j ≥ 1

Pms for r ≥ m and all s > j,

Ar s(a)c =



Ar s(a) for all (r, s, a) /∈ T

Pr s for all 1 ≤ r ≤ m− 2 and all s

or r = m− 1 and s ≥ j such that (r, s, a) ∈ T

Pm−1 s for r ≥ m− 1 and 1 ≤ s < j if j ≥ 1

Pms for r ≥ m and s > j.

(3) c = c(m,∞(j)′, T ) where (0)c = (xm),

(ys)c =

{
Pms for all s > j

P(m−1) s for all 1 ≤ s ≤ j,
(xr)c =

{
(xr) for r ≤ m

(xm) for r > m,

Pc
r s =


Pr s for 1 ≤ r ≤ m− 1 and all s

P(m−1) s for r > m− 1 and all 1 ≤ s ≤ j if j ≥ 1

Pms for r ≥ m and all s > j,

Ar s(a)c =



Ar s(a) for all (r, s, a) /∈ T

Pr s for all 1 ≤ r ≤ m− 2 and all s

or r = m− 1 and s ≥ j such that (r, s, a) ∈ T

Pm−1 s for r ≥ m− 1 and 1 ≤ s < j if j ≥ 1

Pms for r ≥ m and s > j.

(4) c = c(∞(i), n, T ) where (0)c = (0), (xr)c = (xr) for all r ∈ N,

(ys)c =

{
(ys) for y ≤ n

(yn) for s > n,

Pc
r s =


Pr s for all r and 1 ≤ s ≤ m− 1

Pr (n−1) for 1 ≤ r ≤ i and all s > n− 1 if i ≥ 1

Pr n for r > i and all s ≥ n,
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Ar s(a)c =



Ar s(a) for all (r, s, a) /∈ T

Pr s for all r and all 1 ≤ s ≤ n− 2

or r ≥ i and s = n− 1 such that (r, s, a) ∈ T

Pr (n−1) for 1 ≤ r < i and s ≥ n− 1 if i ≥ 1

Pr n for r > i and s ≥ n.

(5) c = c(∞(i)′, n, T ) where (0)c = (yn),

(xr)c =

{
Pr n for all r > i

Pr (n−1) for all 1 ≤ r ≤ i,
(ys)c =

{
(ys) for y ≤ n

(yn) for s > n,

Pc
r s =


Pr s for all r and 1 ≤ s ≤ m− 1

Pr (n−1) for 1 ≤ r ≤ i and all s > n− 1 if i ≥ 1

Pr n for r > i and all s ≥ n,

Ar s(a)c =



Ar s(a) for all (r, s, a) /∈ T

Pr s for all r and all 1 ≤ s ≤ n− 2

or r ≥ i and s = n− 1 such that (r, s, a) ∈ T

Pr (n−1) for 1 ≤ r < i and s ≥ n− 1 if i ≥ 1

Pr n for r > i and s ≥ n.

Proof. Suppose c is a semiprime operation which is not weakly (x, y)-bounded.
By Lemma 3.11 it cannot be the case that Pc

i j = P(i−1) j for some i and j
and Pc

r s = Pr (s−1) for some r and s. So either one of the equalities holds or
neither hold.

If neither hold, then Lemma 3.14 tells us that Pc
i j 6= A(i−1) (j−1)(a) for any

a ∈ k× so Pc
i j = Pi j for all i, j ∈ N. Now (xi) ⊆ Pi j for all j ∈ N implies that

(xi)c ⊆
⋂
j≥1

Pc
i j =

⋂
j≥1

Pi j = (xi).

Thus (xi)c = (xi) for all i ∈ N. Similarly (yj)c = (yj) for all j ∈ N. So all
monomial ideals are c-closed. Using Lemma 3.19 we obtain the set T which
describes which principal (x, y)-primary ideals which are not closed. Thus we
have obtained the closure c described in (1).

Suppose now that Pc
i j = P(i−1) j some i. By Lemma 3.8, c is weakly (x)-

bounded. Since c is not weakly (x, y)-bounded then c cannot be weakly (y)-
bounded by Proposition 3.5. Also c must be (x)-bounded, for if (xi)c = J
for some (x, y)-primary ideal, then by Lemma 3.12 c is weakly (y)- bounded
which cannot be the case. Now by Corollary 2.12 there exists an m ∈ N

such that (xr)c =

{
(xr) for 1 ≤ r ≤ m

(xm) for r > m.
By Lemma 3.15 Pc

r s = Pr s for all

1 ≤ r ≤ m− 1 and all s ∈ N. By Lemma 3.2, Pc
r s = Pc

ms for all r ≥ m and all
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s ∈ N . Once we know the closures of Pms for s ∈ N and the closures of (ys)
we will have determined c.

By Lemma 3.18(2), the closures of the ideals (ys) may be: (a) (ys)c = (ys)

for all s, (b) (ys)c = Pms for all s or (c) (ys)c =

{
Pm−1 s for 1 ≤ s ≤ j

Pms for s > j.

For (b) and (c) described above we immediately see that we obtain the clo-
sures described in (3) above because the closures of the ideals (ys) describe
which ideals among the set Pms must be closed and Lemma 3.19 describes
which principal (x, y)-primary ideals are closed. In both cases, (0)c = (xm) =⋂
s>>0

(ys)c =
⋂

s>>0
Pms. If the (ys) are closed, then using Proposition 3.16,

we can determine the closures of Pms and we obtain the closures described in
(2) above after applying Lemma 3.19 to describe the closures of the principal
(x, y)-primary ideals. Again in both cases (0)c = (0) =

⋂
s>>0

(ys).

If Pc
i j = Pi (j−1) some j following similar reasoning as above but exchanging

the roles of x and y and using Lemma 3.9 in place of Lemma 3.8 and Lemma 3.13
in place of Lemma 3.12 and Lemma 3.3 in place of Lemma 3.2 and Proposition
3.17 in place of Proposition 3.16 we obtain the closures described in (4) and
(5). �

4. Bounded closures on the nodal curve

Although we have proved some lemmas about bounded closures on the nodal
curve, we have yet to classify them. We prove a few more lemmas before we
embark on this goal.

Lemma 4.1. Let R = k[[x, y]]/(xy). Suppose a semiprime operation c defined
on the ideals of R satisfies Pc

r s = Pmn for every r ≥ m and s ≥ n. Then
Pc
r s = Pr s for every r ≤ m− 1 and s ≤ n− 1 and one of the following holds:

(1) Pc
r s = Pr n for all 1 ≤ r ≤ m and all s ≥ n and Pc

r s = Pms for all
r ≥ m and all 1 ≤ s ≤ n.

(2) Pc
r s = Pr n for all 1 ≤ r ≤ m and all s ≥ n, Pc

r s = Pm−1 s for all
r ≥ m − 1 and all 1 ≤ s ≤ j and Pc

r s = Pms for all r ≥ m and all
j < s ≤ n.

(3) Pc
r s = Pr n−1 for all 1 ≤ r ≤ i and all s ≥ n − 1, Pc

r s = Pr n for
all i < r ≤ m and all s ≥ n and Pc

r s = Pms for all r ≥ m and all
1 ≤ s ≤ n.

(4) Pc
r s = Pr n−1 for all 1 ≤ r ≤ i and all s ≥ n − 1, Pc

r s = Pr n for all
i < r ≤ m and all s ≥ n, Pc

r s = Pm−1 s for all r ≥ m − 1 and all
1 ≤ s ≤ j and Pc

r s = Pms for all r ≥ m and all j < s ≤ n.

Proof. Suppose first that Pc
r s 6= Pr s for some 1 ≤ r < m and 1 ≤ s < n.

Then either Pc
r s ⊇ Pr−1 s, Pc

r s ⊇ Pr s−1 or Pc
r s ⊇ Ar−1 s−1(a) for some

a ∈ k×. Since c is semiprime Pc
r sPm−r n−s ⊆ Pc

mn = Pmn implying either
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Pm−1n ⊆ Pmn, Pmn−1 ⊆ Pmn or Pm−1n−1 ⊆ Pmn each leading to a
contradiction. Thus Pc

r s = Pr s for all 1 ≤ m− 1 and 1 ≤ s ≤ n− 1.
For 1 ≤ s ≤ n − 1, Pmn ⊆ Pms. Hence Pmn ⊆ Pc

ms for 1 ≤ s ≤ n − 1.
For r > m our assumption implies that Pc

r n = Pmn. Since Pr n ⊆ Pr s for
1 ≤ s ≤ n− 1 and r > m we see that Pmn ⊆ Pc

r s. Now Pms = Pr s +Pmn ⊆
Pc
r s ⊆ Pc

ms for 1 ≤ s ≤ n − 1 and r > m which implies that Pc
r s = Pc

ms for
1 ≤ s ≤ n− 1 and r > m. Similarly Pc

r s = Pc
r n for 1 ≤ r ≤ m− 1 and s > n.

Thus we need only determine Pc
r n for 1 ≤ r ≤ n−1 and Pc

ms for 1 ≤ s ≤ n−1.
If Pc

r n 6= Pr n for some 1 ≤ r ≤ n− 1, then Pc
r n = Pr n−1. It cannot be the

case that Pc
r n = Pr−1n or Pc

r n = Ar−1n−1(a) for some a ∈ k×. This is because
Pc
r n ⊆ Pc

r n−1 = Pr n−1 and both Pr−1n and Ar−1n−1(a) are incomparable
with Pr n−1. If Pc

r n = Pr n−1, then for all 1 ≤ i ≤ r,

Pi n−1 = Pc
i n−1 ⊇ Pc

i n ⊇ Pc
r n + Pi n = Pi n−1.

Therefore Pc
i n = Pi n−1 for all 1 ≤ i ≤ r. So there will be some maximal r

with 1 ≤ r < n with Pc
i n = Pi n−1 for all 1 ≤ i ≤ r. For all m ≥ i > r,

Pc
i n = Pi n.
Similarly, if Pc

ms 6= Pms, then Pc
ms must be Pm−1 s and this would imply

that Pc
m−1 j = Pm−1 j for all 1 ≤ j ≤ s.

So either (1) Pc
r n = Pr n for all 1 ≤ r ≤ m and Pc

ms = Pms for all 1 ≤ s ≤ n
or (2) Pc

r n = Pr n for all 1 ≤ r ≤ m and Pc
ms = Pm−1 s for all 1 ≤ s ≤ j

and Pc
ms = Pms for all j < s ≤ n or (3) Pc

r n = Pr n−1 for all 1 ≤ r ≤ i,
Pc
r n = Pr n for all i < r ≤ m and Pc

ms = Pms for all 1 ≤ s ≤ n or (4)
Pc
r n = Pr n−1 for all 1 ≤ r ≤ i, Pc

r n = Pr n for all i < r ≤ m, Pc
ms = Pm−1 s

for all 1 ≤ s ≤ j and Pc
ms = Pms for all j < s ≤ n. �

Lemma 4.2. Let R = k[[x, y]]/(xy) and c be a semiprime operation defined
on R which satisfies Pc

r s = Am−1n−1(a) for some a ∈ k× and for all r ≥ m
and s ≥ n. Then Pc

r s = Pr s for all 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ n − 1;
Pc
r s = Pr n−1 for all 1 ≤ r ≤ m− 1 and s > n− 1; and Pc

r s = Pm−1 s for all
r > m− 1 and 1 ≤ s ≤ n− 1.

Proof. Using Lemma 3.19, we see that Ar s(b)
c = Ar s(b) for all 1 ≤ r < m− 1,

1 ≤ s < n− 1 and all b ∈ k×. Thus Pc
r s ⊆ Ar−1 s−1(a)c ∩ Ar−1 s−1(b)c = Pr s

for all 1 ≤ r ≤ m − 1, 1 ≤ s ≤ n − 1 implying that Pc
r s = Pr s for all

1 ≤ r < m− 1, 1 ≤ s < n− 1.
Since Am−1n−1(a) = Pc

ms ⊆ Pc
r s for all 1 ≤ r < m and s ≥ n the chain

Pr n−1 = Am−1n−1(a) + Pr s ⊆ Pc
r n−1

implies Pc
r s = Pc

r n−1 for 1 ≤ r < m and s ≥ n. Similarly Pc
r s = Pc

m−1 s

for 1 ≤ s < n and r ≥ m. Note that we have already shown above that both
Pc
r n−1 = Pr n−1 for 1 ≤ r ≤ m − 1 and Pc

m−1 s = Pm−1 s for 1 ≤ s ≤ n − 1
which concludes the lemma. �

Proposition 4.3. Let R = k[[x, y]]/(xy). Suppose a semiprime operation c is
defined on the ideals of R.
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(1) If c has the property that (0)c = (yn) for some n ≥ 1, then

(yj)c =

{
(yj) for 1 ≤ j ≤ n

(yr) for j > n.

(2) If c has the property that (0)c = (xm) for some m ≥ 1, then

(xi)c =

{
(xi) for 1 ≤ i ≤ m

(xm) for i > m.

(3) If c has the property that (0)c = (0) and c is weakly (x, y)-bounded, then
c is both (x)-bounded and (y)-bounded and hence there exists natural
number m and n such that

(xi)c =

{
(xi) for 1 ≤ i ≤ m

(xm) for i > m

and

(yj)c =

{
(yj) for 1 ≤ j ≤ n

(yr) for j > n.

Proof. (1) Since (0)c = (yn) then for all j ≥ n (yj)c = (yn). Suppose (yj)c 6=
(yj) some 1 ≤ j < n. Then either (yi) ⊆ (yj)c for 1 ≤ i < j or Pmj ⊆ (yj)c

for some natural number m. Both lead to contradictions from the observations
below:

(yn−j+i) = (yn−j)(yi) ⊆ (yn−j)(yj)c ⊆ (yn)c = (yn)

which cannot be the case for i < j.
For k such that kj > n,

Pkmkj = Pk
m j ⊆ ((yj)k)c ⊆ (yn)c = (yn)

which also cannot be the case. Hence,

(yj)c =

{
(yj) for 1 ≤ j ≤ n

(yn) for j > n.

The proof of (2) is identical to the above exchanging the roles of y and x.
For (3) observe that (0) = (xm)(yn) for all natural numbers m and n. If

(xi)c 6= (xj) for some j ≤ i or (yi)c 6= (yj) for some j ≤ i, then (xi)c or (yj)c is
either R, the ring itself, an (x, y)-primary ideal J = Pr s or J = Ar s(a) for some
natural numbers r and s and a ∈ k×. Since c is semiprime (xm)c(yn)c ⊆ (0)c

and all above possibilities lead to a contradiction. Thus for all natural numbers
i, (xi)c = (xj) and (yi)c = (yk) for some j, k natural numbers. Corollary 2.12
implies that c is (x)-bounded and (y)-bounded and gives the classification of
the closures of all the ideals (xi) and (yj) for all natural numbers i and j. �

Lemma 4.4. Let R = k[[x, y]]/(xy) and c be a weakly (x, y)-bounded semiprime
operation defined on the ideals of R.
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(1) If (0)c = (xm) for some natural number m, then (ys)c = Pc
ms for all

natural numbers s and there exists a natural number n such that one of
the following holds:
(a) (yj)c = R for all natural numbers j. (In the case that m = 1 only.)

(b) (yj)c =

{
Pmj for 1 ≤ j ≤ n

Pmn for j > n.

(c) (yj)c =


Pm−1 j for 1 ≤ j < v for some natural number 1 ≤ v ≤ n

Pmj for v ≤ j ≤ n

Pmn for j > n.

(d) (yj)c =

{
Pm−1 j for 1 ≤ j ≤ n

Pm−1n for j > n.

(e) (yj)c =

{
Pm−1 j for 1 ≤ j ≤ n

Am−1n(a) for j > n and somea ∈ k×.

(2) If (0)c = (yn) for some natural number n, then (xr)c = Pc
r n for all

natural numbers r and there exists a natural number m such that one of
the following holds:
(a) (xi)c = R for all natural numbers i. (In the case that n = 1 only.)

(b) (xi)c =

{
Pi n for 1 ≤ i ≤ m

Pmn for i > m.

(c) (xi)c =


Pi n−1 for 1 ≤ i < u for some natural number u ≤ r

Pi n for u ≤ i ≤ m

Pmn for i > m.

(d) (xi)c =

{
Pi n−1 for 1 ≤ i ≤ m

Pmn−1 for i > m.

(e) (xi)c =

{
Pi n−1 for 1 ≤ i ≤ m

Amn−1(a) for i > m and some a ∈ k×.

Proof. (1) For all natural numbers s, Pms = (0)c + (ys) ⊆ (ys)c ⊆ Pc
ms. Thus

(ys)c = Pc
ms. Since c is weakly (x, y)-bounded then c is weakly (y)-bounded

by Proposition 3.6. Thus there exists a natural number n such that for all
s ≥ n (ys)c = (yn)c = Pc

mn. Assume n is the smallest such natural number
such that (yn)c = (ys)c for all s ≥ n.

By Lemma 4.3, (xr)c =

{
(xr) for 1 ≤ r ≤ m

(xm) for r > m.
First note that for 1 ≤ r <

m, Pc
r s = Pr j for some 1 ≤ j ≤ s. If Pc

r s = Pi j or Pc
r s = Ai j(a) for some

1 ≤ i < r and some 1 ≤ j < s, then (xi+1) = (x)Pc
r s ⊆ (xr+1)c ⊆ (xi+1)c

implies that (xi+1)c = (xr+1)c which implies that i = r since i, r < m.
Note that Pc

r 1 = Pr 1 for all 1 ≤ r < m. Suppose that for 1 ≤ r < m,
Pc
r i = Pr j for some 1 ≤ j < i < n. Then (yn)c = (yn−i)(yi)c = (yn−s)Pr j =
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(yn−i+j) ⊆ (yn)c which implies that (ys)c = (yn)c = (yn−s+j)c for all s >
n− s+ j contradicting that n was the smallest such natural number. Thus for
all 1 ≤ r < m and 1 ≤ s < n Pc

r s = Pr s. In particular Pc
m−1 s = Pm−1 s for

all 1 ≤ s < n.
Since Pc

ms = (ys)c for all 1 ≤ s ≤ n, we need to determine the closures
of Pc

ms for 1 ≤ s ≤ n. For s = n it must be the case that Pc
mn = Pmn,

Pc
mn = Pm−1n or Pc

mn = Am−1n−1(a) for some a ∈ k× since Pm−1n−1 is
closed and Pc

mn ⊆ Pm−1n−1. If Pc
nn is either Pm−1n or Am−1n−1(a), then

since Pc
mn ⊆ Pc

ms for all 1 ≤ s ≤ n we see that Pc
ms = Pm−1 s. This covers

cases (1)(d) and (1)(e) above. If Pmn is closed, then we obtain either (1)(b) or
(1)(c) above holds depending on whether Pmj = Pm−1 j for some 1 ≤ j < n. If
Pmj = Pm−1 j for some 1 ≤ j < n, then for all 1 ≤ s ≤ j < n Pms = Pm−1 s

similar to how we obtained (1)(d) and (1)(e).
In the case that m = 1 then (ys)c = Pc

1 s for all s. Either P1 s is closed for
all 1 ≤ s ≤ n or Pc

1 s = R for all s which gives us (1)(a).
The proof of (2) is identical to that of (1) exchanging the roles of x and

y. �

Lemma 4.5. Let R = k[[x, y]]/(xy). Suppose c is an (x, y)-bounded semiprime
operation defined on the ideals of R and (0)c = (0). Then there exist natural
numbers m and n such that

(xr)c =

{
(xr) for 1 ≤ r ≤ m

(xm) for r > m

and

(ys)c =

{
(ys) for 1 ≤ s ≤ n

(ys)c = (yn) for s > n.

Also, precisely one of the following holds:

(1) Pc
r s = Pmn for every r ≥ m and s ≥ n.

(2) Pc
r s = Pm−1n for every r ≥ m− 1 and s ≥ n.

(3) Pc
r s = Pmn−1 for every r ≥ m and s ≥ n− 1.

(4) Pc
r s = Pm−1n−1 for every r ≥ m− 1 and s ≥ n− 1.

(5) Pc
r s = Am−1n−1(a) for some a ∈ k× and for every r ≥ m and s ≥ n.

Proof. Since (0)c = (0), Lemma 4.3 implies that c is (x)-bounded and (y)-
bounded and there exist natural numbers m and n such that

(xi)c =

{
(xi) for 1 ≤ i ≤ m

(xm) for i > m

and

(yj)c =

{
(yj) for 1 ≤ j ≤ n

(yr) for j > n.

For r ≥ m and s ≥ n, Pmn = (xr)c + (ys)c ⊆ Pc
r s ⊆ Pc

mn. Thus, for r ≥ m
and s ≥ n Pc

r s = Pc
mn. We need to determine Pc

mn. By Proposition 3.15
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Pc
m−1n−1 = Pm−1n−1, implying either Pc

mn = Pmn, Pc
mn = Pm−1n, Pc

mn =
Pmn−1 Pc

mn = Am−1n−1(a) for some a ∈ k× or Pc
mn = Pm−1n−1. �

At this point we would like to give a classification of the semiprime operations
which are weakly-(x, y)-bounded. We will assume that the ideals (x0) = (y0) =
P0 s = Pr 0 = A0 s(a) = Ar 0(a) = R for all non-negative integers r and s and
a ∈ k×.

Proposition 4.6. Let R = k[[x, y]]/(xy) and c be a semiprime operation which
is weakly (x, y)-bounded. Set T ⊆ N2 × k× satisfying the property that if
(r, s, a) /∈ T , then (m,n, b) /∈ T for m < r, n < s and all b ∈ k× and let
m, n, i and j be non-negative integers with 0 ≤ i ≤ m and 1 ≤ j ≤ n. Then c
is one of the following:

(1) For i < m and j < n: c = c(m(i), n(j), T ) where (0)c = (0),

(xr)c =

{
(xr) for 0 ≤ r ≤ m

(xm) for r > m,
(ys)c =

{
(ys) for 0 ≤ s ≤ n

(yn) for s > n,

Pc
r s =



Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr n−1 for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for i < r ≤ m and s ≥ n

Pm−1 s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n

Pmn for r > m and s > n,

Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T and 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr n−1 for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for i < r ≤ m and s ≥ n

Pm−1 s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n

Pmn for r ≥ m and s ≥ n.

(2) For i < m and j < n: c = c(m(i)′, n(j), T ) where (0)c = (yn),

(xr)c =


Pr n−1 for 0 ≤ r ≤ i

Pr n for i < r ≤ m

Pmn for r > m,

(ys)c =

{
(ys) for 0 ≤ s ≤ n

(yn) for s > n,
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Pc
r s =



Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr n−1 for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for i < r ≤ m and s ≥ n

Pm−1 s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n

Pmn for r > m and s > n,

Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T and 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr n−1 for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for i < r ≤ m and s ≥ n

Pm−1 s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n

Pmn for r ≥ m and s ≥ n.

(3) For i < m and j < n: c = c(m(i), n(j)′, T ) where (0)c = (xm),

(xr)c =

{
(xr) for 0 ≤ r ≤ m

(xm) for r > m,
(ys)c =


Pm−1 s for 0 ≤ s ≤ j

Pms for j < s ≤ n

Pmn for s > n,

Pc
r s =



Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr n−1 for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for i < r ≤ m and s ≥ n

Pm−1 s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n

Pmn for r > m and s > n,

Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T and 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr n−1 for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for i < r ≤ m and s ≥ n

Pm−1 s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n

Pmn for r ≥ m and s ≥ n.

(4) For i < m and j < n: c = c(m(i)′, n(j)′, T ) where (0)c = Pmn,

(xr)c =


Pr n−1 for 0 ≤ r ≤ i

Pr n for i < r ≤ m

Pmn for r > m,

(ys)c =


Pm−1 s for 0 ≤ s ≤ j

Pms for j < s ≤ n

Pmn for s > n,
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Pc
r s =



Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr n−1 for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for i < r ≤ m and s ≥ n

Pm−1 s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n

Pmn for r > m and s > n,

Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T and 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr n−1 for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for i < r ≤ m and s ≥ n

Pm−1 s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n

Pmn for r ≥ m and s ≥ n.

(5) For j < n: c = c(m(m), n(j), T ) where (0)c = (0),

(xr)c =

{
(xr) for 0 ≤ r ≤ m

(xm) for r > m,
(ys)c =

{
(ys) for 0 ≤ s ≤ n

(yn) for s > n,

Pc
r s =



Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ m and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n− 1

Pm (n−1) for r ≥ m and s ≥ n− 1,

Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T, 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr (n−1) for 1 ≤ r ≤ m and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n− 1

Pm (n−1) for r ≥ m and s ≥ n− 1.

(6) For j < n: c = c(m(m)′, n(j), T ) where (0)c = (yn),

(xr)c =

{
Pr n−1 for 0 ≤ r ≤ m

Pmn−1 for r > m,
(ys)c =

{
(ys) for 0 ≤ s ≤ n

(yn) for s > n,
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Pc
r s =



Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ m and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n− 1

Pm (n−1) for r ≥ m and s ≥ n− 1,

Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T, 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ m and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ j

Pms for r ≥ m and j < s ≤ n− 1

Pm (n−1) for r ≥ m and s ≥ n− 1.

(7) For i < m: c = c(m(i), n(n), T ) where (0)c = (0),

(xr)c =

{
(xr) for 0 ≤ r ≤ m

(xm) for r > m,
(ys)c =

{
(ys) for 0 ≤ s ≤ n

(yn) for s > n,

Pc
r s =



Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for r > i and s ≥ n

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ n

P(m−1)n for r ≥ m− 1 and s ≥ n,

Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T, 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for r > i and s ≥ n

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ n

P(m−1)n for r ≥ m− 1 and s ≥ n.

(8) For i < m: c = c(m(i), n(n)′, T ) where (0)c = (xm),

(xr)c =

{
(xr) for 0 ≤ r ≤ m

(xm) for r > m,
(ys)c =

{
P(m−1) s for 0 ≤ s ≤ n

P(m−1)n for s > n,

Pc
r s =



Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for r > i and s ≥ n

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ n

P(m−1)n for r ≥ m− 1 and s ≥ n,
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Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T, 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ i and s ≥ n− 1

Pr n for r > i and s ≥ n

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ n

P(m−1)n for r ≥ m− 1 and s ≥ n.

(9) c = c(m(m), n(n), T ) where (0)c = (0),

(xr)c =

{
(xr) for 0 ≤ r ≤ m

(xm) for r > m,
(ys)c =

{
(ys) for 0 ≤ s ≤ n

(yn) for s > n,

Pc
r s =


Pr s for all 0 ≤ r ≤ m− 1 and all 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ n− 1

P(m−1) (n−1) for r ≥ m− 1 and s ≥ n− 1,

Ar s(b)
c =



Ar s(b) for (r, s, b) /∈ T

Pr s for (r, s, b) ∈ T, 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ n− 1

Pr (n−1) for 0 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 0 ≤ s ≤ n− 1

P(m−1) (n−1) for r ≥ m− 1 and s ≥ n− 1.

(10) c = cp(m,n, a) where a ∈ k× where (0)c = (0),

(xr)c =

{
(xr) for 1 ≤ r ≤ m

(xm) for r > m,
(ys)c =

{
(ys) for 1 ≤ s ≤ n

(yn) for s > n,

Pc
r s =


Pr s for 1 ≤ r ≤ m− 1 and 1 ≤ s ≤ n− 1

Pr (n−1) for 1 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 1 ≤ s ≤ n− 1

A(m−1) (n−1)(a) for r ≥ m and s ≥ n,

Ar s(b)
c =



Ar s(b) for 1 ≤ r ≤ m− 2 and 1 ≤ s ≤ n− 2

or r = m− 1, s = n− 1 and b = a

Pr (n−1) for 1 ≤ r ≤ m− 1 and s ≥ n

P(m−1) s for r ≥ m and 1 ≤ s ≤ n− 1

P(m−1) (n−1) for r = m− 1, s = n− 1 and b 6= a

A(m−1) (n−1)(a) for r ≥ m and s ≥ n.

(11) c = cp(m
′, n, a) where a ∈ k× where (0)c = (yn),

(xr)c =

{
Pr (n−1) for 1 ≤ r ≤ m− 1

A(m−1) (n−1)(a) for r ≥ m,
(ys)c =

{
(ys) for 1 ≤ s ≤ n

(yn) for s > n,
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Pc
r s =


Pr s for 1 ≤ r ≤ m− 1 and 1 ≤ s ≤ n− 1

Pr (n−1) for 1 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 1 ≤ s ≤ n− 1

A(m−1) (n−1)(a) for r ≥ m and s ≥ n,

Ar s(b)
c =



Ar s(b) for 1 ≤ r ≤ m− 2 and 1 ≤ s ≤ n− 2

or r = m− 1, s = n− 1 and b = a

Pr (n−1) for 1 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 1 ≤ s ≤ n− 1

P(m−1) (n−1) for r = m− 1, s = n− 1 and b 6= a

or r = m− 1 and s ≥ n or r ≥ m and s = n− 1

A(m−1) (n−1)(a) for r ≥ m and s ≤ n.

(12) c = cp(m,n′, a) where a ∈ k× where (0)c = (xm),

(xr)c =

{
(xr) for 1 ≤ r ≤ m

(xm) for r > m,
(ys)c =

{
P(m−1) s for 1 ≤ s ≤ n− 1

A(m−1) (n−1)(a) for s ≥ n,

Pc
r s =


Pr s for 1 ≤ r ≤ m− 1 and 1 ≤ s ≤ n− 1

Pr (n−1) for 1 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 1 ≤ s ≤ n− 1

A(m−1) (n−1)(a) for r ≥ m and s ≥ n,

Ar s(b)
c =



Ar s(b) for 1 ≤ r ≤ m− 2 and 1 ≤ s ≤ n− 2

or r = m− 1, s = n− 1 and b = a

Pr (n−1) for 1 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 1 ≤ s ≤ n− 1

P(m−1) (n−1) for r = m− 1, s = n− 1 and b 6= a

or r = m− 1 and s ≥ n or r ≥ m and s = n− 1

A(m−1) (n−1)(a) for r ≥ m and s ≤ n.

(13) c = cp(m
′, n′, a) where a ∈ k× where (0)c = Amn(a),

(xr)c =

{
Pr (n−1) for 1 ≤ r ≤ m− 1

A(m−1) (n−1)(a) for r ≥ m,
(ys)c =

{
P(m−1) s for 1 ≤ s ≤ n− 1

A(m−1) (n−1)(a) for s ≥ n,

Pc
r s =


Pr s for 1 ≤ r ≤ m− 1 and 1 ≤ s ≤ n− 1

Pr (n−1) for 1 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 1 ≤ s ≤ n− 1

A(m−1) (n−1)(a) for r ≥ m and s ≥ n,
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Ar s(b)
c =



Ar s(b) for 1 ≤ r ≤ m− 2 and 1 ≤ s ≤ n− 2

or r = m− 1, s = n− 1 and b = a

Pr (n−1) for 1 ≤ r ≤ m− 1 and s ≥ n− 1

P(m−1) s for r ≥ m− 1 and 1 ≤ s ≤ n− 1

P(m−1) (n−1) for r = m− 1, s = n− 1 and b 6= a

or r = m− 1 and s ≥ n or r ≥ m and s = n− 1

A(m−1) (n−1)(a) for r ≥ m and s ≤ n.

Proof. Suppose that c is a semiprime operation which is weakly (x, y)-bounded.
Then by Proposition 3.6, c is weakly (x)-bounded and weakly (y)-bounded.
There are 6 possibilities for the closure of (0). Either (I) (0)c = R; (II) (0)c =
Ar s(a) some r, s and a ∈ k×, (III) (0)c = Pr s some r and s, (IV) (0)c = (xr)
some r, (V) (0)c = (ys) some s, or (VI) (0)c = (0).

(I) If (0)c = R, the Ic = R for all ideals I ⊆ R by extension. Thus c
corresponds to the closure defined in (9) with m = 1 = n and T = N2 × k×.

(II) Let r = m − 1 and s = n − 1. If (0)c = Am−1n−1(a) for some natural
numbers m and n and some a ∈ k×, then Pr n−1 = Am−1n−1(a) = (0)c ⊆
Pc
r s ⊆ Am−1n−1(a) for all r ≥ m and s ≥ n. Lemma 4.2 classifies the closures

of Pr s for all natural numbers r and s. Since Am−1n−1(a) + (xr) ⊆ (xr)c for
all r and Pm−1 s = Am−1n−1(a) + (ys) ⊆ (ys)c for all s, we obtain that c must
be the closure described in (13).

(III) Let r = m and s = n. If (0)c = Pmn for some natural numbers m and
n, then for all r > m and s > n Pmn = (0)c ⊆ Pc

r s ⊆ Pmn. Lemma 4.1 gives
us a classification of the closures of Pr s for all r and s. Since Pmn = (0)c ⊆
(xr)c ⊆ Pc

r n for all r and Pmn = (0)c ⊆ (ys)c ⊆ Pc
ms for all s, the we obtain

the closure described in (4).
(IV) If (0)c = (xr) for some natural number r, then by Proposition 4.3(2)

gives the closures of the ideals (xi) for all i and Lemma 4.4(1) give the closures
of the ideal (yj) for all j. Also Lemma 4.1 gives us a classification of the
closures of Pr s for all r and s and Lemma 3.19 determines the closures of the
(x, y)-primary principal ideals and we obtain the closures described in (3), (8)
and (12).

(V) If (0)c = (ys) for some natural number s, then by Proposition 4.3(1) (yj)
for all j and Lemma 4.4(2) give the closures of (xi) for all i. Also Lemma 4.1
gives us a classification of the closures of Pr s for all r and s and Lemma 3.19
determines the closures of the (x, y)-primary principal ideals and we obtain the
closures described in (2), (6) and (11).

(VI) If (0)c = (0), then since c is weakly (x, y)-bounded, then c is both
weakly (x)-bounded and (y)-bound by Proposition 3.6. Lemma 4.5 classifies
the closures of the ideals (xr), (ys) and Pr s for all natural numbers r and s
and the closures of the of (x, y)-primary principal ideals are easily determined
using Lemma 3.19. We conclude that the closures obtained are those described
in (1), (5), (7), (9) and (10). �
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5. Some non-Noetherian examples

Recall that the closures on the nodal curve which were both (x)-bounded
and (y)-bounded, were also (x, y)-bounded. However, there are examples of
closures c on commutative rings where c is P -bounded for the dimension one
primes but not m-bounded for a maximal ideal m.

Example 5.1. Let S = k[y, x, xy ,
x
y2 , . . .] and m = (y, x, xy ,

x
y2 , . . .). Set R = Sm.

R is a local 2-dimensional valuation ring and in fact mR = (y) is principal. Set⋂
n≥1

(yn) = (x, xy ,
x
y2 , . . .) = P . Note that Pn+1 ⊆ (xn) ⊆ (x

n

y ) ⊆ · · · ⊆ Pn

and
⋂
n≥1

Pn = (0). The only prime ideals in R are (0), P and mR. We can

define a closure operation c on R which is semiprime and P -bounded but not
mR-bounded. Suppose (Pn)c = P for all n ≥ 1. Since the ideals (x

n

y ) are

sandwiched between Pn+1 and Pn then
(
xn

y

)c
= P . Note that (ym)Pn = Pn.

Thus if (ym)c = (ym) for all m ≥ 1, then

P = (Pn)c = ((ym)Pn)c ⊇ (ym)c(Pn)c = (ym)P = P.

Also

P =

(
xn

yk

)c
=

(
(ym)

(
xn

ym+k

))c
⊇ (ym)c

(
xn

ym+k

)c
= (ym)P = P.

Thus c is P -bounded but not mR-bounded.

Example 5.2. Let R be as above. Define c instead to be (ym)c = (y) for
all m ≥ 1 and Ic = I for all P -primary ideals. c is an example of a closure
operation which is mR-bounded but not P -bounded. Note that c is not a

semiprime operation since
(
xn

yk

)
= (ym)

(
xn

ym+k

)
and

(ym)c
(

xn

ym+k

)c
=

(
xn

ym+k−1

)
*
(

(ym)

(
xn

ym+k

))c
=

(
xn

yk

)
for m > 1.

Example 5.3. Let R be again as above. Define c instead to be (ym)c = (y)

for all m ≥ 1 , (Pn)c = Pn for all n ≥ 1 and
(
xn

yk

)c
= Pn for all k ≥ 1. c is an

example of a closure operation which is mR-bounded but not P -bounded. In
comparison to the example above, c is actually semiprime since

(ym)c
(

xn

ym+k

)c
= (y)Pn = Pn =

(
xn

yk

)c
=

(
(ym)

(
xn

ym+k

))c
for k ≥ 1, m ≥ 1 and n ≥ 1.

This type of behavior of the closure operations c most likely will only be
exhibited in non-Noetherian rings. In Noetherian local rings, if mI = I, then
we know that I = (0) by Nakayama’s Lemma. Also for any Noetherian domain
R of dimension 2 or more, R has infinitely many height 1 primes. So most
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likely if (R,m) is a local ring of dimension two or more, if P and Q are height
one prime ideals such that P + Q = m and c is a closure operations which is
both P -bounded and Q-bounded, then c will be a closure operation which is
at least weakly m-bounded. For example,

Example 5.4. Let R = k[x, y](x,y). Suppose c is a closure operation such that
(xm)c = (x) for all m ≥ 1 and (yn)c = (y) for all n ≥ 1. Then

(mn)c ⊇ (xn, yn)c ⊇ (xn)c + (yn)c ⊇ (x, y) = m

which implies that (mn)c = mc for all m,n ≥ 1. Since all m-primary ideals are
sandwiched between powers of m, this implies that all m-primary ideals have
the same closure as m. Thus c is weakly m-bounded.

However, it may be the case that m-boundedness of a closure operation c
may not imply that c is P -bounded for primes P of dimension one even if c is
semiprime.
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