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HERMITIAN POSITIVE DEFINITE SOLUTIONS OF THE

MATRIX EQUATION Xs + A∗X−tA = Q
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Abstract. In this paper, the Hermitian positive definite solutions of the

matrix equation Xs + A∗X−tA = Q, where Q is an n × n Hermitian
positive definite matrix, A is an n × n nonsingular complex matrix and

s, t ∈ [1,∞) are discussed. We find a matrix interval which contains
all the Hermitian positive definite solutions of this equation. Also, a

necessary and sufficient condition for the existence of these solutions is

presented. Iterative methods for obtaining the maximal and minimal
Hermitian positive definite solutions are proposed. The theoretical results

are illustrated by numerical examples.

1. Introduction and preliminaries

We consider Hermitian positive definite solutions of the nonlinear matrix
equation

Xs +A∗X−tA = Q,(1.1)

where, A is an n × n nonsingular complex matrix, Q is an n × n Hermitian
positive definite matrix and s, t ∈ [1,∞).

This form of the nonlinear matrix equation and same configuration to them,
can be appeared in control theory [11, 13], ladder networks [2, 3], dynamic
programming [19], quantum mechanics [17], stochastic filtering and statistics
[5]. The existence of Hermitian positive definite solutions of the matrix equation
(1.1), has been investigated in some special cases. The case s = t = 1 has
been systematically investigated by several authors [2, 3, 10, 11]. The cases
s = 1, t ∈ N in [16], s = 1, t ∈ (0,∞) in [18, 20], s = 1, t ≥ 1 in [9], s, t ∈ N in
[6, 7, 8, 21, 22] and s > 0, t > 0 in [24] have been studied.

In this paper, we consider the Hermitian positive definite solutions of the
matrix equation (1.1), where s ≥ 1 and t ≥ 1. Also, we find a matrix interval
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which contains all the Hermitian positive definite solutions of the matrix equa-
tion (1.1). Indeed by using the Brouwer’s fixed point theorem [1, Theorem 4.3]
and the Banach’s fixed point theorem [1, Theorem 1.1], we obtain sufficient
conditions regarding to the existence and uniqueness of the Hermitian positive
definite solutions of equation (1.1). Also, we obtain a necessary and sufficient
condition for the existence of these solutions. Iterative methods for obtaining
the extremal Hermitian positive definite solutions of the matrix equation (1.1)
are presented. Moreover, we show that [8, Theorem 2.2], [9, Theorem 2.2], [14,
Theorem 4], and [22, Theorem 2.2] are not formulated correctly, because some
of the assumptions are vacuous, see Section 2. Finally, the theoretical results
are illustrated by numerical examples.

The following notations are used throughout this paper. The notations Mn

denotes the algebra of n× n complex matrices. For A ∈Mn, the matrices AT

and A∗ denote the transpose and conjugate transpose of A, respectively. The
symbol I denotes the n×n identity matrix. Let A be an m×n matrix and B
be an p× q matrix. Then the Kronecker product A and B denoted by A⊗ B
that is the mp× nq block matrix:

A⊗B =

 a11B · · · a1nB
· · · · · · · · ·
an1B · · · amnB


If m = p and n = q, then A ◦B denotes Schur product A and B with elements
given by (A ◦ B)ij = (A)ij(B)ij . For Hermitian matrix A, we write A ≥ 0
(A > 0), if A is a positive semi-definite (definite) matrix. For two Hermitian
matrices A and B, the notation A ≥ B (A > B) means that A − B ≥ 0
(A−B > 0). We define a matrix interval by [A,B] = {X |A ≤ X ≤ B} and
(A,B) = {X |A < X < B}. Symbols ‖A‖ and ‖A‖F are used, respectively,
for the spectral norm and Frobenius norm. Let A be a nonsingular matrix.
We indicate the condition number of A with cond (A). Let {λi (A)}ni=1 be
the spectrum of a Hermitian matrix A. Then we assume that λn (A) ≤ · · · ≤
λ2 (A) ≤ λ1 (A). We use the notationsXS andXL for the minimal and maximal
Hermitian positive definite solutions of equation (1.1), respectively. By the
HPD solution of Eq. (1.1), we mean the Hermitian positive definite solution of
equation (1.1).

Let A > 0 and A = U∗DU be the spectral decomposition of the matrix A.
We define Ar := U∗DrU , where r ∈ R. In the following, we state inequalities
between Ar and Br, where 0 < A ≤ B and r ∈ R.

Lemma 1.1 ([23, Theorem 1.1](Löwner-Heinz)). If 0 ≤ A ≤ B and 0 ≤ r ≤ 1,
then 0 ≤ Ar ≤ Br.

Lemma 1.2 ([12, Theorem 2.1]). Let A and B be positive operators on a
Hilbert space H such that M1I ≥ A ≥ m1I > 0, M2I ≥ B ≥ m2I > 0 and
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0 < A ≤ B. Then, for all r ≥ 1

Ar ≤
(
M1

m1

)r−1
Br, Ar ≤

(
M2

m2

)r−1
Br.(1.2)

Using [4, Proposition V.1.6], we find the similar inequalities as Lemma 1.1
and Lemma 1.2 with opposite direction, for r ∈ (−∞, 0).

Now, we are going to find some bounds for ‖Ar −Br‖F , where r ∈ R. Let
J be an open interval in R. We say that f ∈ C1(J), if the real function f is
continuously differentiable on J .

Theorem 1.3. Let f ∈ C1(J) and [α, β] ⊂ J . If A,B ∈ [αI, βI], then

‖f (A)− f (B)‖F ≤ max
α≤c≤β

|f ′ (c)| ‖A−B‖F .(1.3)

Proof. Suppose that A,B ∈ [αI, βI] and Lt = tA+ (1− t)B for all 0 ≤ t ≤ 1.
Then Lt ∈ [αI, βI]. Using [4, Theorem X.4.5], we have

‖f (A)− f (B) ‖F ≤ sup
0≤t≤1

‖Df (Lt) ‖F ‖A−B‖F ,

where Df (A) is denoted the Frechet derivative of the function f at A. Let Lt =
UtDtU

∗
t for all 0 ≤ t ≤ 1, where Dt and Ut are diagonal and unitary matrices,

respectively. Suppose that f [1] (A) is denoted the first divided difference of f at
A [4, p. 123]. Then, by using [4, Theorem V.3.3] and the mean value theorem,

‖Df (Lt) ‖F = sup
‖H‖F=1

‖Df (Lt) (H) ‖F = sup
‖H‖F=1

‖f [1] (Dt) ◦ U∗t HUt‖F

≤ sup
‖H‖F=1

(
max
i,j

∣∣∣∣(f [1] (Dt)
)
ij

∣∣∣∣ ‖H‖F) = max
i,j

∣∣∣∣(f [1] (Dt)
)
ij

∣∣∣∣
≤ max
λn(Lt)≤c≤λ1(Lt)

|f ′ (c)| ≤ max
α≤c≤β

|f ′ (c)| ,

where ◦ is denoted the Schur product. Therefore,

‖f (A)− f (B)‖F ≤ max
α≤c≤β

|f ′ (c)| ‖A−B‖F . �

Corollary 1.4. Let A,B ∈ [αI, βI] and α > 0. Then

rαr−1‖A−B‖F ≤ ‖A
r −Br‖F ≤ rβ

r−1‖A−B‖F ; r ≥ 1,(1.4)

rβr−1‖A−B‖F ≤ ‖A
r −Br‖F ≤ rα

r−1‖A−B‖F ; 0 < r ≤ 1.(1.5)

Proof. Let r > 0 and f (x) = xr be defined on the interval J := (0,∞). So
f ∈ C1(J) and is increasing on J . We know that f is convex (concave) for r ≥ 1
(0 < r ≤ 1). Therefore max

α≤c≤β
|f ′ (c)| = f ′ (β) for r ≥ 1 and max

α≤x≤β
|f ′ (x)| =

f ′ (α) for 0 < r ≤ 1. Using (1.3), the right hand side of (1.4) and (1.5) are
derived. By replacing Ar → A, Br → B, and 1

r → r, the left hand sides
of the inequalities (1.4) and (1.5) are obtained by the right hand sides of the
inequalities (1.5) and (1.4), respectively. �
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Corollary 1.5. Let A,B ∈ [αI, βI] and α > 0. Then for all r ∈ (−∞, 0),

−rβr−1‖A−B‖F ≤ ‖A
r −Br‖F ≤ −rα

r−1‖A−B‖F .(1.6)

Proof. Let r ∈ (−∞, 0) and f (x) = xr be defined on the interval J := (α,∞)
with α > 0. We have, f ∈ C1(J) and f is convex and decreasing on J .
Therefore, max

α≤c≤β
|f ′ (c)| = −f ′ (α) = −rαr−1. Hence, by using (1.3), we have

‖Ar −Br‖F = ‖f (A)− f (B)‖F ≤ −rα
r−1‖A−B‖F .

By replacing Ar → A, Br → B, and 1
r → r, the left hand side of the

inequality (1.6) is obtained by the right hand side of (1.6) and [4, Proposition
V.1.6]. �

2. Necessary conditions and sufficient conditions

Let X be an HPD solution of Eq. (1.1) and s, t ∈ [1,∞). It is readily seen
that

X ∈
[(
AQ−1A∗

) 1
t , Q

1
s

]
.(2.1)

This interval was obtained in [22, Theorem 2.1] for s, t ∈ N. Now, we are going
to obtain a better interval for HPD solutions of Eq. (1.1).

Theorem 2.1. Let F (P ) =
(
A
(
Q− cond(P )1−sP s

)−1
A∗
) 1

t

and X be an

HPD solution of Eq. (1.1). Then(
AQ−1A∗

) 1
t < F

((
AQ−1A∗

) 1
t

)
≤ X.

Proof. Let X be an HPD solution of Eq. (1.1). First, we will show that for all

matrix P such that the conditions (i) 0 < P ≤ X and (ii) Q < cond (P )
1−s

P s+
A∗P−tA hold, then P < F (P ) ≤ X.

Let 0 < P ≤ X. Since λn(P )I ≤ P ≤ λ1(P )I, by using (1.2), we obtain
that

P s ≤
(
λ1 (P )

λn (P )

)s−1
Xs =

(
λ1 (P )λ1

(
P−1

))s−1
Xs

=
(
‖P‖

∥∥P−1∥∥)s−1Xs = cond (P )
s−1

Xs.

Since X is an HPD solution of Eq. (1.1),

F (P ) =
(
A
(
Q− cond(P )1−sP s

)−1
A∗
) 1

t ≤
(
A(Q−Xs)

−1
A∗
) 1

t

= X.

Thus, F (P ) ≤ X.
Now, let cond(P )1−sP s +A∗P−tA > Q. Therefore,

F (P ) =
(
A
(
Q− cond(P )1−sP s

)−1
A∗
) 1

t

>
(
P t
) 1

t = P

and so P < F (P ) ≤ X.
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Choose P =
(
AQ−1A∗

) 1
t . By using (2.1), we obtain that 0 < P ≤ X. Also,

we have

cond (P )
1−s

P s +A∗P−tA = cond (P )
1−s

P s +Q > Q.

Therefore, P =
(
AQ−1A∗

) 1
t holds in conditions (i) and (ii). Hence(

AQ−1A∗
) 1

t < F
((
AQ−1A∗

) 1
t

)
≤ X. �

The matrix X is an HPD solution of Eq. (1.1) if and only if Y := X−1 is an
HPD solution of Eq.

Y t +A−∗Y −sA−1 = A−∗QA−1.(2.2)

Remark 2.2. We see that Eq. (2.2) is the same as Eq. (1.1) by replacing
A−∗QA−1 → Q, A−1 → A, t→ s, and s→ t.

We are using auxiliary Eq. (2.2) to find an upper bound for HPD solutions
of Eq. (1.1) which is sharper than (2.1).

Theorem 2.3. Let X be an HPD solution of Eq. (1.1). Then

X ≤ G
(
Q

1
s

)
< Q

1
s ,

where G (P ) =
(
Q− cond(P )

1−t
A∗P−tA

) 1
s

.

Proof. Let X be an HPD solution of Eq. (1.1). Therefore Y := X−1 is an HPD

solution of Eq. (2.2). Using Remark 2.2 and Theorem 2.1, we have Q
−1
s <

F (Q
−1
s ) ≤ Y , where

F (P ) =
(
A−1

(
A−∗QA−1 − cond(P )1−tP t

)−1
A−∗

) 1
s

=
(
Q− cond(P )1−tA∗P tA

)−1
s .

By choosing G (P ) = F−1
(
P−1

)
, the proof is completed. �

Corollary 2.4. Let F and G be the same as in Theorem 2.1 and Theorem 2.3,
respectively. If X is an HPD solution of Eq. (1.1), then

X ∈
[
F
((
AQ−1A∗

) 1
t

)
, G
(
Q

1
s

)]
⊂
[(
AQ−1A∗

) 1
t , Q

1
s

]
.

By using Corollary 2.4, we will present an iterative method for obtaining the
minimal (maximal) HPD solution of Eq. (1.1), when t ≥ s ≥ 1 (s ≥ t ≥ 1), in
Section 3.

In the following, we study sufficient conditions for the existence of HPD solu-
tions of Eq. (1.1). Some sufficient conditions, for various values of s, t ∈ [1,∞),
was presented in [14, Theorem 4], [8, Theorem 2.2], [9, Theorem 2.2], and
[22, Theorem 2.2]. But some of the assumptions of these theorems are vacu-

ous, because, by choosing X =
(
AQ−1A∗

) 1
t , we obtain that A∗X−tA = Q >
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Q−
(
AQ−1A∗

) s
t . Therefore, we can not assume A∗X−tA ≤ Q−

(
AQ−1A∗

) s
t

for all X ∈
[(
AQ−1A∗

) 1
t , P

]
. Now, in the following, we are going to improve

these results.

Theorem 2.5. Let s, t ∈ [1,∞) and there exist k > 1 such that

λ1

(
Q−

1
2

(
AQ−1A∗

) s
tQ−

1
2

)
≤
(
1− k−1

)
k

−s
t .(2.3)

Then,
(
kAQ−1A∗

) 1
t ≤ Q

1
s . Moreover, if Xt ≥ k

(
AQ−1A∗

)
for all X ∈ Ω :=[(

kAQ−1A∗
) 1

t , Q
1
s

]
, then Eq. (1.1) has an HPD solution in Ω.

Proof. Using (2.3), we obtain that

Q−
1
2

(
AQ−1A∗

) s
tQ−

1
2 ≤ λ1

(
Q−

1
2

(
AQ−1A∗

) s
tQ−

1
2

)
I ≤

(
1− k−1

)
k

−s
t I.

Since k > 1, we have (
kAQ−1A∗

) s
t ≤

(
1− k−1

)
Q ≤ Q.(2.4)

So
(
kAQ−1A∗

) 1
t ≤ Q 1

s .

Now, let Ω =
[(
kAQ−1A∗

) 1
t , Q

1
s

]
and Xt ≥ k

(
AQ−1A∗

)
for all X ∈ Ω. It

is readily seen that Ω is a closed, convex and bounded set. We define G (X) =

(Q−A∗X−tA)
1
s on Ω. Suppose that X ∈ Ω. Using (2.4), we have

G(X)
s

= Q−A∗X−tA ≥ Q−A∗
(
k−1A−∗QA−1

)
A

=
(
1− k−1

)
Q ≥

(
kAQ−1A∗

) s
t .(2.5)

Therefore, G (X) ≥
(
kAQ−1A∗

) 1
t .

On the other hand G (X) = (Q−A∗X−tA)
1
s ≤ Q 1

s . So G (Ω) ⊆ Ω and since
G is continuous on (0,∞), by using the Brouwer’s fixed point theorem and [1,
Remark 4.1], the map G on Ω has a fixed point. So, the matrix Eq. (1.1) has
an HPD solution in Ω. �

Lemma 2.6. If A ∈Mm, B ∈Mm×n, and C ∈Mn, then

‖ABC‖F ≤ ‖A‖ ‖C‖ ‖B‖F .(2.6)

Proof. Let vec (A) :=
[
aT1 , a

T
2 , . . . , a

T
n

]T
, where ai (1 ≤ i ≤ n) are the columns

of the matrix A. By [15, Lemma 4.3.1], vec (ABC) =
(
CT ⊗A

)
vec (B). So

‖ABC‖F = ‖vec (ABC)‖ =
∥∥(CT ⊗A) vec (B)

∥∥
≤
∥∥CT ⊗A∥∥ ‖vec(B)‖ ≤ ‖A‖ ‖C‖ ‖B‖F . �

In the following, we study uniqueness of the solutions of Eq. (1.1) in Ω.
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Corollary 2.7. Let the assumptions of Theorem 2.5 hold and

a =
t

s

λ1(A∗A)

((1− k−1)λn(Q))
1− 1

s (kλn(AQ−1A∗))
1+ 1

t

< 1.

Then, the matrix XL is the unique HPD solution of Eq. (1.1) in Ω and the
sequence

Xk+1 =
(
Q−A∗X−tk A

) 1
s , k ≥ 1,

for any X1 ∈ Ω, is convergent to the XL. Also, for all k ≥ 1,

‖Xk+1 −XL‖ ≤
ak

1− a
‖X2 −X1‖,

‖Xk+1 −XL‖ ≤ ak‖X1 −XL‖.

Proof. Let G (X) = (Q−A∗X−tA)
1
s on Ω. Suppose that G (X)

s
, G (Y )

s ≥ βI
and X,Y ≥ αI. Using (1.5), (2.6) and (1.6), respectively, we have

‖G (X)−G (Y )‖F =
∥∥∥(G (X)

s
)

1
s − (G (Y )

s
)

1
s

∥∥∥
F

≤ 1

s
β

1
s−1
∥∥G (X)

s −G (Y )
s∥∥
F

=
1

s
β

1
s−1
∥∥A∗ (X−t − Y −t)A∥∥

F

≤ 1

s
β

1
s−1‖A‖2

∥∥X−t − Y −t∥∥
F

≤ 1

s
β

1
s−1λ1(A∗A)

(
tα−t−1‖X − Y ‖F

)
.(2.7)

Since X,Y ∈ Ω, we have

X,Y ≥
(
kAQ−1A∗

) 1
t ≥

(
kλn

(
AQ−1A∗

)) 1
t I,

and by using (2.5), we obtain that

G (X)
s
, G (Y )

s ≥
(
1− k−1

)
Q ≥

(
1− k−1

)
λn (Q) I.

Let α :=
(
kλn(AQ−1A∗)

) 1
t and β := (1− k−1)λn (Q). By replacing α, β in

(2.7), we have ‖G (X)−G (Y )‖F ≤ a‖X − Y ‖F , where a < 1. Hence, G is
a contraction map on Ω. Since G(Ω) ⊆ Ω, by Banach’s fixed point theorem,
G has the unique fixed point X̄ in Ω and so Eq. (1.1) has the unique HPD
solution X̄ ∈ Ω. Also, for any X1 ∈ Ω, sequence

Xk+1 = G(Xk) =
(
Q−A∗X−tk A

) 1
s ; k ≥ 1,

is convergent to the X̄ and for all k ≥ 1,

‖Xk+1 − X̄‖ ≤
ak

1− a
‖X2 −X1‖,

‖Xk+1 − X̄‖ ≤ ak‖X1 − X̄‖.
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Now, let X be an HPD solution of Eq. (1.1) and X̄ ≤ X. By using (2.1), we

obtain that X̄ ≤ X ≤ Q 1
s and so X ∈ Ω. Since X̄ is the unique HPD solution

of Eq. (1.1) in Ω, we have X̄ = X and hence X̄ is the maximal HPD solution
of Eq. (1.1). �

Using Remark 2.2, Theorem 2.5, and choosing l = k−1, we obtain the fol-
lowing:

Corollary 2.8. Let s, t ∈ [1,∞) and there exist 0 < l < 1 such that

λ1

(
Q−

t
2sAQ−1A∗Q−

t
2s

)
≤ (1− l) l ts .(2.8)

Then
(
AQ−1A∗

) 1
t ≤ (lQ)

1
s . Moreover, if for all X ∈ Λ =

[(
AQ−1A∗

) 1
t , (lQ)

1
s

]
we have Xs ≤ lQ, then Eq. (1.1) has an HPD solution in Λ.

Corollary 2.9. Let the assumptions of Corollary 2.8 hold and

b =
s

t

(
(1− l)−1 λ1

(
AQ−1A∗

))1− 1
t

(lλ1 (Q))
1+ 1

s

λn(A∗A)
< 1.

Then, the matrix XS is the unique HPD solution of Eq. (1.1) in Λ. Also, the
sequence

Xk+1 =
(
A (Q−Xs

k)
−1
A∗
) 1

t

; k ≥ 1,

for any X1 ∈ Λ, is convergent to the XS and for all k ≥ 1, we have

‖Xk+1 −XS‖ ≤
bk

1− b
‖X2 −X1‖,

‖Xk+1 −XS‖ ≤ bk‖X1 −XS‖.

Proof. Let F (X) =
(
A (Q−Xs)

−1
A∗
) 1

t

on Λ. Suppose that F (X) , F (Y ) ≤
βI and X,Y ≤ αI. Therefore, by using (2.6) and (1.4), we have

‖F (X)− F (Y )‖F =
∥∥∥F (X)

(
F (X)

−1 − F (Y )
−1
)
F (Y )

∥∥∥
F

≤ ‖F (X)‖ ‖F (Y )‖
∥∥∥F (X)

−1 − F (Y )
−1
∥∥∥
F

≤ β2
∥∥∥F (X)

−1 − F (Y )
−1
∥∥∥
F

≤ 1

t
β1+t

∥∥∥F (X)
−t − F (Y )

−t
∥∥∥
F

=
1

t
β1+t

∥∥A−∗ (Xs − Y s)A−1
∥∥
F

≤ 1

t
β1+t

∥∥A−1∥∥2‖Xs − Y s‖F

≤ s

t
β1+tαs−1λ1(A−∗A−1)‖X − Y ‖F
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=
s

t

β1+tαs−1

λn(A∗A)
‖X − Y ‖F .(2.9)

Since X,Y ∈ Λ, we have

X,Y ≤ (lQ)
1
s ≤ (lλ1 (Q))

1
s I,

and the same as (2.6), we obtain that

F (X) , F (Y ) ≤
(

(1− l)−1
(
AQ−1A∗

)) 1
t ≤

(
(1− l)−1 λ1

(
AQ−1A∗

)) 1
t

I.

Let α := (lλ1 (Q))
1
s and β :=

(
(1− l)−1 λ1

(
AQ−1A∗

)) 1
t

. By replacing α, β

in (2.9), we have ‖F (X)− F (Y )‖F ≤ b‖X − Y ‖F , where b < 1. The same as
the proof of Corollary 2.7, proof is completed. �

Let γ ∈ R, θ > 0. Consider fθ,γ (x) = xs+t − θxt + γ on (0,∞) . Then

fθ,γ on
[
( t
s+tθ)

1
s ,∞

)
is increasing and min fθ,γ (x) = γ − s

s+t (
t
s+t )

t
s θ1+

t
s . If

min fθ,γ (x) = γ− s
s+t (

t
s+t )

t
s θ1+

t
s ≤ 0, then equation fθ,γ (x) = 0 has a unique

solution α in
[
( t
s+tθ)

1
s ,∞

)
. Consider the following functions on (0,∞).

f (x) = xs+t − λn (Q)xt + λ1 (A∗A) ,

g (x) = xs+t − λ1 (Q)xt + λn (A∗A) .

Let λ1 (A∗A) ≤ s
s+t (

t
s+t )

t
sλ

1+ t
s

n (Q) . Therefore

λn (A∗A) ≤ s

s+ t
(

t

s+ t
)

t
sλ

1+ t
s

1 (Q) .

So we have min f (x) ≤ 0 and min g (x) ≤ 0. Therefore equations f (x) = 0 and

g (x) = 0 have a unique solution α and β in
[
( t
s+tθ)

1
s ,∞

)
, respectively. Since

f (x) ≥ g (x), we have ( t
s+tλn (Q))

1
s ≤ α ≤ β. Consider the matrix interval

Ω := [αI, βI].

Theorem 2.10. If one of the following inequalities hold, then Eq. (1.1) has an
HPD solution.

(1) λ1(A∗A) ≤ s
s+t (

t
s+t )

t
sλ

1+ t
s

n (Q).

(2) λ1(AQ−1A∗) ≤ ( t
s+t )

t
s+t ( s

s+t )
s

s+tλ
t

s+t
n (AA∗).

Proof. Let inequality (1) be holds and G(X) = (Q−A∗X−tA)
1
s on Ω =

[αI, βI]. If X ∈ Ω, then

λn (Gs (X)) = λn
(
Q−A∗X−tA

)
≥ λn

(
Q−A∗α−tA

)
≥ λn (Q)− λ1 (A∗A)α−t = αs.

λ1 (Gs (X)) = λ1
(
Q−A∗X−tA

)
≤ λ1

(
Q−A∗β−tA

)
≤ λ1 (Q)− λn (A∗A)β−t = βs.
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Hence G (Ω) ⊆ Ω. By using Brouwer’s fixed point theorem, the map G on Ω
has a fixed point and so Eq. (1.1) has an HPD solution.

For the second one, we know that Eq. (1.1) has an HPD solution if and only
if Eq. (2.2) has an HPD solution. Let inequality (2) be holds. Therefore

λ1(A−∗A−1) =
1

λn(AA∗)
≤
(

(
t

s+ t
)

t
s+t (

s

s+ t
)

s
s+t

1

λ1(AQ−1A∗)

) s+t
t

=
t

s+ t
(
s

s+ t
)

s
t λ

1+ s
t

n (A−∗QA−1).

Now, by using Remark 2.2 and inequality (1), Eq. (2.2) has an HPD solution
Y . Therefore, the matrix X := Y −1 is an HPD solution of Eq. (1.1). �

Corollary 2.11. If λ1(A∗A) < s
s+t (

t
s+t )

t
sλ

1+ t
s

n (Q), then Eq. (1.1) has the
unique HPD solution in Ω.

Proof. Let G be the same as in the proof of Theorem 2.10. By the proof of this
Theorem, we see that G (Ω) ⊆ Ω. Let X,Y ∈ Ω. Therefore Gs (X) , Gs (Y ) ≥
αsI and X,Y ≥ αI. Using (2.7), we have

‖G(X)−G(Y )‖F ≤
t

s

λ1 (A∗A)

αs+t
‖X − Y ‖F .

Since α ≥
(

t
s+tλn (Q)

) 1
s

, we have

‖G(X)−G(Y )‖F ≤
λ1 (A∗A)

s
s+t (

t
s+t )

t
sλ

1+ t
s

n (Q)
‖X − Y ‖F .

Hence, G is contraction on the set Ω and by Banach’s fixed point theorem, G
has the unique fixed point on Ω. So Eq. (1.1) has the unique HPD solution in
Ω. �

Theorem 2.12. If Eq. (1.1) has an HPD solution, then for s, t ∈ [1,∞) we
have

(1) λn(A∗A) ≤ s
s+t (

t
s+t )

t
sλ

1+ t
s

1 (Q),

(2) λn(AQ−1A∗) ≤ ( t
s+t )

t
s+t ( s

s+t )
s

s+tλ
t

s+t

1 (A∗A).

Proof. The first inequality is obtained by the same method as in [8, Theorem
3.3]. For the second one, letX be an HPD solution of Eq. (1.1). Then Y := X−1

is an HPD solution of Eq. (2.2). Now, by using Remark 2.2 and inequality (1),
we have

λn(A−∗A−1) ≤ t

s+ t
(
s

s+ t
)

s
t λ

1+ s
t

1 (A−∗QA−1).

Therefore,

λn(AQ−1A∗) =
1

λ1(A−∗QA−1)
≤
(

t

s+ t
(
s

s+ t
)

s
t 1

λn (A−∗A−1)

) t
s+t
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= (
t

s+ t
)

t
s+t (

s

s+ t
)

s
s+tλ

t
s+t

1 (A∗A). �

3. Iterative methods

In this section, we will present iterative methods for obtaining the extremal
HPD solution of Eq. (1.1). Let F be an operator on Λ and A,B ∈ Λ . We say
that F is an operator monotone on Λ, if F (A) ≥ F (B), whenever A ≥ B.

Theorem 3.1. Let t = 1, s ≥ 1 and Eq. (1.1) has an HPD solution. Then the
sequence

P1 = Q
1
s , Pk+1 =

(
Q−A∗P−1k A

) 1
s ; k ≥ 1,(3.1)

is monotonically decreasing and converges to the matrix XL.

Proof. Let X be an HPD solution of Eq. (1.1). By considering t = 1 in Theorem

2.3, we have G (P ) =
(
Q−A∗P−1A

) 1
s . In this case, we see that G is an

operator monotone on (0,∞). By induction, we will show that X ≤ Pk+1 < Pk,
for k ∈ N. Using Theorem 2.3, we have X ≤ P2 = G (P1) < P1. Now, let
X ≤ Pk < Pk−1. Since G is an operator monotone map, we obtain that

X = G(X) ≤ Pk+1 = G (Pk) < Pk = G (Pk−1).

Thus, X ≤ Pk+1 < Pk for k ∈ N. Therefore, the sequence {Pk} is decreasing
and bounded sequence and hence it is convergent. Let limPk = P . Since G
is continuous on (0,∞), we have G (P ) = P and P ≥ X. Therefore, P is a
solution of Eq. (1.1) and P ≥ X. Hence P = XL. �

Theorem 3.2. Let s ≥ t ≥ 1 and Eq. (1.1) has an HPD solution. Then the
sequence

P1 = Q
1
s , Pk+1 =

(
Q−A∗P−tk A

) 1
s ; k ≥ 1,(3.2)

is monotonically decreasing and converges to the matrix XL. Moreover, for all
k ∈ N,

‖Pk+1 −XL‖F ≤
t

s

λ1(A∗A)

λs+tn (XL)
‖Pk −XL‖F .(3.3)

Proof. Let X be an HPD solution of Eq. (1.1). Therefore Y = Xt is an HPD
solution of equation

Y
s
t +A∗Y −1A = Q.(3.4)

Since s
t ≥ 1, by Theorem 3.1, the sequence {P tk} is monotonically decreasing

and converges to the matrix YL, where YL is the maximal HPD solution of
Eq. (3.4). Let X be an arbitrary HPD solution of Eq. (1.1). So Y = Xt is an
HPD solution of Eq. (3.4). Since YL is the maximal HPD solution of Eq. (3.4),

we have YL ≥ Y = Xt. So Y
1
t

L ≥ X. Therefore XL = Y
1
t

L and the sequence
(3.2) is monotonically decreasing and converges to the matrix XL.
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Let G(P ) = (Q−A∗P−tA)
1
s on (0,∞). Therefore Pk+1 = G(Pk) and XL =

G(XL). By using (2.7), for all k ∈ N, we obtain that

(3.5)

‖Pk+1 −XL‖F = ‖G(Pk)−G(XL)‖F

≤ t

s
β

1
s−1α−t−1λ1(A∗A)‖Pk −XL‖F ,

where Pk, XL ≥ αI and G(Pk)s, G(XL)s ≥ βI. But G(Pk)s, G(XL)s ≥
λsn(XL)I and Pk ≥ XL ≥ λn(XL)I for all k ∈ N. Therefore, by replacing
α = λn(XL) and β = λsn(XL) in (3.5),

‖Pk+1 −XL‖F ≤
t

s

λ1(A∗A)

λs+tn (XL)
‖Pk −XL‖F . �

Theorem 3.3. Let t ≥ s ≥ 1 and Eq. (1.1) has an HPD solution. Then the
sequence

P1 = (AQ−1A∗)
1
t , Pk+1 = (A(Q− P sk )

−1
A∗)

1
t ; k ≥ 1,(3.6)

is monotonically increasing and converges to the matrix XS. Moreover, for all
k ∈ N, we have

‖Pk+1 −XS‖F ≤
s

t

λs+t1 (XS)

λn(A∗A)
‖Pk −XS‖F .

Proof. Let X be an HPD solution of Eq. (1.1). So, the matrix Y := X−1 is an
HPD solution of Eq. (2.2). Using Remark 2.2 and Theorem 3.2, the sequence
{P−1k } is monotonically decreasing and converges to the matrix YL, where YL
is the maximal HPD solution of Eq. (2.2). Therefore, the sequence {Pk} is
monotonically increasing and converges to the matrix XS = Y −1L .

Now, let F (P ) =
(
A (Q− P s)−1A∗

) 1
t

on (0, Q
1
s ). Hence Pk+1 = F (Pk)

and XS = F (XS). By using (2.9), for all k ∈ N, we obtain that

‖Pk+1 −XS‖F = ‖F (Pk)− F (XS)‖F ≤
s

t

β1+tαs−1

λn(A∗A)
‖Pk −XS‖F ,(3.7)

where Pk, XS ≤ αI and F (Pk), F (XS) ≤ βI. For all k ∈ N, we have Pk ≤
XS ≤ λ1(XS)I and F (Pk) ≤ F (XS) ≤ λ1(XS)I. So, by replacing α = λ1(XS)
and β = λ1(XS) in (3.7),

‖Pk+1 −XS‖F ≤
s

t

λ1(XS)s+t

λn(A∗A)
‖Pk −XS‖F . �

In the following, we present a necessary and sufficient condition for the
existence of HPD solutions of Eq. (1.1), when s, t ∈ [1,∞).

Proposition 3.4. If s ≥ t ≥ 1, then Eq. (1.1) has an HPD solution if and only
if the sequence (3.2) is convergent to the Hermitian positive definite matrix P .
(In this case, by Theorem 3.2, the sequence (3.2) is monotonically decreasing
and converges to the maximal HPD solution XL.)
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Also, if t ≥ s ≥ 1, then Eq. (1.1) has an HPD solution if and only if the
sequence (3.6) is convergent to the Hermitian positive definite matrix P . (In
this case, by Theorem 3.3, the sequence (3.6) is monotonically increasing and
converges to the minimal HPD solution XS .)

Remark 3.5. By Proposition 3.4, if s ≥ t ≥ 1 (t ≥ s ≥ 1) and the sequence
(3.2) (sequence (3.6)) is not decreasing (not increasing) sequence or there exists
k ∈ N such that Pk is not an Hermitian positive definite, then Eq. (1.1) has
not HPD solution.

Proposition 3.6. Let s = t ≥ 1. Then Eq. (1.1) has an HPD solution if
and only if the sequence (3.2) is monotonically decreasing and converges to the
matrix XL if and only if the sequence (3.6) is monotonically increasing and
converges to the matrix XS.

4. Numerical examples

In this section, by some numerical examples, the convergence of the above
iterative sequences are studied. All the tests are performed by MATLAB with
machine precision around 10−10. We continue the iterative sequences up to
step k, where ‖Pk+1 − Pk‖F ≤ 1.0e− 10.

Example 4.1. Consider Eq. (1.1) with s = 5
3 , t = 1,

A=


0.75 −0.75 0 0
0.80 0.80 0 0

0 0 0.85 0.85
0 0 −0.90 0.90

, Q=


2.405 0.155 0 0
0.155 2.405 0 0

0 0 3.065 −0.175
0 0 −0.175 3.065

.
The matrix A is a nonsingular and Q is a Hermitian positive definite matrix.
By choosing k = 2, we obtain that

λ1(Q−
1
2 (AQ−1A∗)

s
tQ−

1
2 ) = 0.1400 ≤ 0.1575 =

k − 1

k
s+t
t

.

So, by Theorem 2.5, 2AQ−1A∗ ≤ Q
3
5 . Moreover if Ω := [2AQ−1A∗, Q

3
5 ],

Eq. (1.1) has an HPD solution in Ω. Since

a =
t

s

λ1(A∗A)

((1− k−1)λn (Q))
1− 1

s (kλn (AQ−1A∗))
1+ 1

t

= 0.9273 < 1,

by Corollary 2.7, Eq. (1.1) has the unique HPD solution XL in Ω and sequence

Pk+1 =
(
Q−A∗P−tA

) 1
s , P1 =

1

2

((
kAQ−1A∗

) 1
t +Q

1
s

)
∈ Ω,

is convergent to the XL. After k = 25 step, we see that ‖P25 − P24‖F =
7.7435e− 011. Therefore

XL ' P25 =


1.2575 0.0412 0 0
0.0412 1.2241 0 0

0 0 1.5625 −0.0491
0 0 −0.0491 1.5344

 .
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Example 4.2. Consider the matrix Eq. (1.1) with s =
√

3, t =
√

2,

A =


4 1 9 4
5 6 9 8
0 4 1 5
2 7 5 1

 , Q =


686 441 392 441
441 931 588 686
392 588 686 392
441 686 392 735

 .
Since

λ1(A∗A)− s

s+ t
(

t

s+ t
)

t
sλ

1+ t
s

n (Q) = −627.6697 ≤ 0,

by Theorem 2.10 (1), Eq. (1.1) has an HPD solution and so by using Theorem
3.2, the iterative sequence (3.2) is convergent to the maximal HPD solution of
Eq. (1.1). For k = 6, we have ‖P6 − P5‖F = 6.7641e− 12. Hence

XL ' P6 =


39.1792 11.8409 12.4479 14.1989
11.8409 43.2579 19.6539 23.7551
12.4479 19.6539 37.7836 9.9658
14.1989 23.7551 9.9658 37.6148

 .
Example 4.3. Consider the matrix Eq. (1.1) with s = 3

2 , t = 3,

A =


4 2 −2 0 1
1 5 −1 0 3
2 0 5 1 0
−3 1 5 −7 5
0 0 −4 1 8

 , Q =


32 10 −14 23 −8
10 32 −4 −7 22
−14 −4 73 −34 −12
23 −7 −34 53 −27
−8 22 −12 −27 101

 .
Since

λ1(AQ−1A∗)− (
t

s+ t
)

t
s+t (

s

s+ t
)

s
s+tλn(A∗A)

t
s+t = −0.9199 ≤ 0,

by Theorem 2.10(2), Eq. (1.1) has an HPD solution and so by Theorem 3.3, the
iterative sequence (3.6) is convergent to the minimal HPD solution of Eq. (1.1).
For k = 9, we have ‖P9 − P8‖F = 5.3450e− 011. Therefore

XS ' P9 =


0.9692 0.0170 0.0033 −0.0065 0.0020
0.0170 0.9776 −0.0003 0.0042 0.0036
0.0033 −0.0003 0.9853 0.0026 −0.0044
−0.0065 0.0042 0.0026 0.9951 0.0012
0.0020 0.0036 −0.0044 0.0012 0.9930

 .
Example 4.4. Let s = 3, t = 2 and A,Q be the same as in Example 4.3. Re-
placing 2A→ A and consider the sequence (3.2). Since P3 is not an Hermitian
positive definite, by using Remark 3.5, the Eq. (1.1) has not HPD solution.
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