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INTEGRAL MEANS AND MAXIMUM AREA

INTEGRAL PROBLEMS FOR CERTAIN FAMILY

OF p-VALENT FUNCTIONS

Navneet Lal Sharma

Abstract. The paper considers p-valent functions in the open unit disk.
We study the integral means along with the area integral problems for

functions belonging to a family of p-valent functions.

1. Introduction

The concept of univalence has a natural extension as described in p-valent
function theory. A function f which is analytic in the open unit disk D := {z ∈
C : |z| < 1} is said to be p-valent in D if it takes each of its values at most p
times (p ∈ N) in D, that is, if the number of roots of the equation f(z) = w
in D, for any w, does not exceed p. For example, f(z) = z2 is a 2-valent in D.
Let Ap denote the family of functions of the form

(1.1) f(z) = zp +

∞∑
n=1

an+pz
n+p, p ∈ N,

which are analytic and p-valent in D. The motivation of studying p-valent func-
tions comes from the theory of univalent functions. One of the basic problems
in p-valent function theory is to see how results from univalent function theory
fit analogously into the theory of p-valent functions for p ≥ 2. Background
on some of the important problems in the theory of p-valent functions, for in-
stance, can be found in [5,9,10,16,17,23,28,29]. However, in this collection, the
classical integral means and area problems have not been studied in p-valent
setting, which is our objective in the present work.
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The integral means and Dirichlet integral in p-valent theory are defined as
follows. For r ∈ (0, 1], consider a function f ∈ Ap which has the integral means

L1(r, f, p) :=
1

2π

∫ π

−π

r2p

|f(reiθ)|2
dθ, z = reiθ ∈ D,

and the Dirichlet integral

∆(r, f) :=

∫∫
Dr
|f ′(z)|2 dxdy = πpr2p+π

∞∑
n=1

(n+p)|an+p|2r2(n+p), z = x+ iy,

where Dr = {z ∈ C : |z| < r}. Computing these integrals are known as the
integral means and area problems.

In this article, we mainly focus on computing the above integrals for a most
general family of functions in Ap. For A ∈ C, −1 ≤ B ≤ 0 and A 6= B, we
define the general family by

S∗p (A,B) :=

{
f ∈ Ap :

zf ′(z)

pf(z)
≺ 1 +Az

1 +Bz
, z ∈ D

}
,

where the symbol ≺ denotes the usual subordination. The function

(1.2) kA,B,p(z) :=

{
zp(1 +Bz)((A/B)−1)p for B 6= 0
zpeApz for B = 0

plays the role of an extremal function for the class S∗p (A,B). Due to some
technical reasons, we are not presenting the precise statements of our main
results in this section, however, readers may refer to Sections 3 and 4 for more
detail.

One of the motivations to study this form of the integral means comes from
the following observations. The integral means are associated with some func-
tionals appearing in planar fluid mechanics concerning isoperimetric problems
for moving phase domains; see [31, 32]. For more details on the functionals,
reader can refer to Section 3. Another aim to study integral means prob-
lem was to solve the Bieberbach conjecture; see [8, 26] and references therein.
In 2002, Gromova and Vasil’ev [11] made a conjecture that if f ∈ S∗(β) :=
S∗1 (1− 2β,−1) for β ∈ [0, 1), then the estimate

L1(r, f) := L1(r, f, 1) ≤ Γ(5− 4β)

Γ2(3− 2β)

holds, where Γ is the classical gamma function. The estimate was proven sharp
only for β = 0 and β = 1/2. This conjecture has been recently settled by
Ponnusamy and Wirths in [21] in a more general setting by considering the
family S∗(A,B) := S∗1 (A,B) for −1 ≤ B < A ≤ 1. The class S∗(A,B)
was introduced by Janowski in [13]. In this paper we estimate the quantity
L1(r, f, p) for f ∈ S∗p (A,B), p ∈ N, A ∈ C, −1 ≤ B ≤ 0 and A 6= B.

The interest to study area problems comes from computing areas of certain
regions in the complex plane. In general it is a difficult problem to find area
of an arbitrary region. However, our problem finds exact area formulae of
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regions that are images of D under certain functions. In 1990, Yamashita [33]
conjectured that

max
f∈C

∆

(
r,
z

f

)
= πr2

for each r, 0 < r ≤ 1. The maximum is attained only by the rotations of the
function z/(1 − z). Here C denotes the well-known class of convex functions
in A1. In 2013, the Yamashita conjecture was settled in [15] for functions
belonging to the family S∗(β) := S∗1 (1 − 2β,−1). The Yamashita conjecture
problem for the class S∗(A,B) := S∗1 (A,B), −1 ≤ B < A ≤ 1, was suggested
in [21] and it was partially solved by the authors in [27]. In the recent article
of Ponnusamy et al. [20], this problem has been completely solved for the full
range A ∈ C,−1 ≤ B < 0 and A 6= B. In this paper, we discuss the Dirichlet
integral ∆(r, zp/f) when f ∈ S∗p (A,B) for all p ∈ N.

Remaining part of the paper is organized as follows. In Section 2, we give
preliminary information on the family S∗p (A,B) and other basic definitions that
are used in the sequel. Sections 3 and 4 deal with the statement of our main
results and some of their important consequences. In Section 5, we derive some
important results which play a vital role to prove our main results. Section 6 is
devoted to the proofs of our main theorems. Finally, in Section 7, we propose
some open problems.

2. Basic information

Let f and g be two analytic functions in D. We say that f is subordinate to
g, written as f(z) ≺ g(z), if there exists an analytic function w in D for which
w(0) = 0, |w(z)| ≤ |z| < 1 such that f(z) = g(w(z)). Furthermore, if the func-
tion g is univalent in D, then we have the following geometric characterization
(see also [8, 14,18]):

f(D) ⊂ g(D) and f(0) = g(0)⇔ f(z) ≺ g(z).

A function f ∈ Ap is called p-valent starlike of order β if there exists a ρ > 0,
such that for any z, ρ < |z| < 1,

Re

(
zf ′(z)

f(z)

)
> β, 0 ≤ β < p

and

(2.1)

∫ 2π

0

Re

(
zf ′(z)

f(z)

)
dθ = 2pπ, z = reiθ, θ ∈ [0, 2π]

for each r, ρ < r < 1. This integral is just the number of zeros of f in the
interior of the circle |z| = r and hence f has p zeros in D, and is in fact p-valent
there [5]. We denote by S∗p (β), the class of all p-valent starlike functions of
order β and it was studied by Goluzina in [9]. Obviously, S∗p (0) =: S∗p is the
usual class of p-valent starlike functions which was introduced by Goodman in
[10].
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For the case p = 1, the integral (2.1) is equal to 2π and f has one simple
zero in D, and in fact f is univalent in D.

Choosing A = λe−iα(e−iα − (2β/p) cosα) and B = −λ, the class S∗p (A,B)
reduces to the class Fp(α, β, λ) of functions f ∈ Ap, satisfying the relation

eiα
zf ′(z)

pf(z)
≺
eiα +

(
e−iα − (2β/p) cosα

)
λz

1− λz
, z ∈ D

or

eiα
zf ′(z)

pf(z)
≺

(
1 + (1− (2β/p))λz

1− λz

)
cosα+ i sinα,

where 0 < λ ≤ 1, 0 ≤ β < p, p ∈ N and |α| < π/2. The class Fp(α, β, λ)
was introduced by Aouf [2]. Obviously, Fp(α, β, λ) ⊂ Fp(α, β, 1) =: Sα,p(β).
Functions in Sα,p(β) are said to be p-valent α-spirallike functions of order β (see
[16]). The class Sα,p(0) =: Sα,p is the class of p-valent α-spirallike functions.
Recently in [28,29], the authors obtained correct forms of the coefficient bounds
for functions to be in the class Fp(α, β, λ) and other related classes of p-valent
functions. If we let different values of p, α, β and λ in the class Fp(α, β, λ),
then we get certain subclass of p-valent functions (see for instance [29]). It is
easy to see that the function kp,α,β,λ is defined by

(2.2) kp,α,β,λ(z) =
zp

(1− λz)ξ
, ξ = 2(p− β)e−iα cosα

belongs to the class Fp(α, β, λ).
We note that, by taking special choices of parameters A,B and p in the defi-

nition of the class S∗p (A,B), we get the following classes which were investigated
and studied by several authors. We list down some of them as follows:

(1) S∗p (1− (2β/p),−1) =: S∗p (β).
(2) S∗p (1,−1) =: S∗p .
(3) The class S∗1 ((1−2β)λ,−λ) =: T (λ, β) (0 ≤ β < 1) is studied in [2,27].
(4) S∗p ((1 − (2β/p))λ,−λ) =: Tp(λ, β) (i.e., Fp(0, β, λ) =: Tp(λ, β)), the

class of p-valent functions of T (λ, β) which is studied in [3].
(5) The class S∗1 (β) =: S∗(β) (0 ≤ β < 1) is the class of starlike functions

of order β which was studied by Robertson in [24].
(6) The class S∗1 (1,−1) = S∗(0) =: S∗ denotes the well-known class of

starlike functions.

In this paper, we consider functions f in Ap (p ∈ N) such that zp/f is
non-vanishing in D, hence it can be represented as Taylor’s series of the form

(2.3)
zp

f(z)
= 1 +

∞∑
n=1

bn+p−1z
n, z ∈ D.

We will also make use of the Gaussian Hypergeometric functions defined by

2F1(a, b; c; z) = 1 +

∞∑
n=1

(a)n(b)n
(c)n(1)n

zn, |z| < 1,
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where a, b, c ∈ C and c 6= Z− = {0,−1,−2, . . .}. The function 2F1(a, b; c; z) is
analytic in D. The Pochhammer symbol (a)n is defined in terms of the Gamma
functions Γ, by

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
.

In 1882, for Re(c−a−b) > 0 and z = 1, Gauss established the following useful
relation connected with the Euler gamma function

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

<∞.

Similarly, the function 0F1(a; z) is defined as

0F1(a; z) =

∞∑
n=0

1

(a)n

zn

n!
, |z| < 1.

For basic information about Gaussian Hypergeometric functions, we refer to
the well-known text books [1, 22].

3. Integral means problem

For a normalized analytic function g(z) = z +
∑∞
n=2 bnz

n, z ∈ D, we intro-
duce the functional

M(r, g, λ1, λ2) =
1

2π

∫ π

−π
|g(reiθ)|λ1 |g′(reiθ)|λ2dθ,

where 0 < r ≤ 1 and λ1, λ2 ∈ R, which is called the integral means. This
functional was introduced and investigated by Gromova and Vasil’ev in [11]
and attracts much attention (see [4, 19]).

For f ∈ Ap, let us consider the integral mean

M(r, f, p, λ1, λ2) =
1

2π

∫ π

−π
|f(reiθ)|λ1 |f ′(reiθ)|λ2dθ

for λ1, λ2 ∈ R and r ∈ (0, 1). For the special cases λ1 = −2 and λ2 = 0, we
find the following interesting integral means such that

I1(r, f, p) := M(r, f, p,−2, 0) =
1

2π

∫ π

−π

1

|f(reiθ)|2
dθ.

We now state our first main result.

Theorem 3.1. Let A ∈ C,−1 ≤ B ≤ 0, A 6= B and p ∈ N. If f ∈ S∗p (A,B)
and has the form (2.3), then, for 0 < r ≤ 1, we have

L1(r, f, p) := r2pI1(r, f, p) ≤
{

2F1

(
φp, φp; 1;B2

)
, if B 6= 0;

J0(2ip|A|), if B = 0,

where φ = (A/B) − 1 and J0(z) is the Bessel function of order zero. Both
inequalities are sharp for the rotations of the function kA,B,p as defined by
(1.2).
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We remark that when p = 1 and −1 ≤ B < A ≤ 1 in Theorem 3.1, then we
obtain [21, Theorem 1]. For A = 1 − (2β/p) and B = −1, Theorem 3.1 leads
to the following immediate consequence.

Corollary 3.2. For 0 ≤ β < p and p ∈ N, let f ∈ S∗p (β). Then we have

L1(r, f, p) ≤ Γ(1 + 4(p− β))

Γ2(1 + 2(p− β))
, r ∈ (0, 1].

The inequality is sharp.

The case p = 1 is recently obtained in [21, Corollary 1]. Moreover, choosing
B = −A in Theorem 3.1, we have:

Corollary 3.3. Let f ∈ S∗p (A,−A) for 0 < A ≤ 1 and p ∈ N. Then we have

L1(r, f, p) ≤ 2F1(−2p,−2p; 1;A2), 0 < r ≤ 1.

The case p = 1 is recently obtained in [21, Corollary 2]. If we choose A =
λe−iα(pe−iα − 2β cosα)/p and B = −λ, then

pφ = p

(
A

B
− 1

)
= −e−iα(pe−iα − 2β cosα)− p

= −2e−iα(p− β) cosα =: −ξ.
By Theorem 3.1, for B 6= 0, we get the following integral means for f ∈
Fp(α, β, λ).

Theorem 3.4. For 0 < λ ≤ 1, 0 ≤ β < p, p ∈ N and |α| < π/2. Let
f ∈ Fp(α, β, λ) be such that zp/f has the form (2.3). Then we have

L1(r, f, p) := r2pI1(r, f, p) ≤
∞∑
n=0

∣∣∣∣(ξn
)∣∣∣∣2 λ2n,

where ξ = 2(p−β)e−iα cosα. The equality is attained for the functions kp,α,β,λ
as defined by (2.2).

If we let λ = 1, then Theorem 3.4 yields:

Corollary 3.5. Let f ∈ Fp(α, β, 1) =: Sα,p(β), for 0 ≤ β < p, p ∈ N and
|α| < π/2. Then we have

L1(r, f, p) ≤
∞∑
n=0

∣∣∣∣(ξn
)∣∣∣∣2 ,

where ξ = 2(p − β)e−iα cosα. The estimate is sharp. In particular, we have
the following:

• L1(r, f, p) ≤
∑∞
n=0

∣∣(η
n

)∣∣2 for f ∈ Fp(α, 0, 1) =: Sα,p
where η = 2pe−iα cosα.

• L1(r, f, p) ≤ Γ(1 + 4p)/Γ2(1 + 2p) for f ∈ Fp(0, 0, 1) =: S∗p .

All inequalities are sharp.
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The case p = 1 in Corollary 3.5 is obtained in [21, Theorem 2]. The proof
of Theorem 3.1 is presented in Section 6.

4. Area integral problem

Let f ∈ Ap. The area of the multi-sheeted image of the disk Dr := {z ∈
C : |z| < r} (0 < r ≤ 1) under f is denoted by ∆(r, f). Thus, in terms of the
coefficients of f ∈ Ap, f ′(z) = pzp−1 +

∑∞
n=1(n+ p)an+pz

n+p−1, with the help
of the classical Parseval-Gutzmer formula (see [27]) one gets the relation

∆(r, f) =

∫∫
Dr
|f ′(z)|2 dxdy = πpr2p + π

∞∑
n=1

(n+ p)|an+p|2r2(n+p).

This is called the Dirichlet integral of f . Computing this area is known as the
area problem for the functions of type f . We call f Dirichlet-finite if ∆(1, f) <
∞.

We now state our second main results.

Theorem 4.1. Let f ∈ S∗p (A, 0), for 0 < |A| ≤ 1 and p ∈ N, be of the form
(2.3). Then we have

(4.1) max
f∈S∗

p (A,0)
∆

(
r,
zp

f

)
= π|A|2p2r20F1(2, |A|2p2r2) =: EA(r, p),

where r, 0 < r ≤ 1, and the maximum is attained by the rotations of kA,0,p(z) =
zpeApz.

The case A = 1 simplifies to:

Corollary 4.2. If f ∈ S∗p (1, 0) for p ∈ N, then we have

max
f∈S∗

p (1,0)
∆

(
r,
zp

f

)
= πp2r20F1(2, p2r2), r ∈ (0, 1].

The maximum is attained by the rotations of the function k1,0,p(z) = zpepz.

Theorem 4.3. Let f ∈ S∗p (A,B) for A ∈ C,−1 ≤ B < 0, A 6= B, p ∈ N and
f be of the form (2.3). Then, for 0 < r ≤ 1, we have

max
f∈S∗

p (A,B)
∆

(
r,
zp

f

)
=: EA,B(r, p),

where

EA,B(r, p) = π|A−B|2p2r22F1

(
φp+ 1, φp+ 1; 2;B2r2

)
,

with φ = (A/B) − 1. The maximum is attained for the rotations of kA,B,p as
defined by (1.2).

Moreover, Theorem 4.3, for A = 1− (2β/p) and B = −1, gives the following
result.
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Corollary 4.4. If f ∈ S∗p (β) for 0 ≤ β < p and p ∈ N, then we have

max
f∈S∗

p (β)
∆

(
r,
zp

f

)
= 4π(p− β)2r22F1

(
(2β − 2p+ 1), (2β − 2p+ 1); 2; r2

)
for all r ∈ (0, 1]. The maximum is attained for the rotations of the function
zp/(1− z)2p−2β. In particular, for f ∈ S∗p (0) =: S∗p , one has

max
f∈S∗

p

∆

(
r,
zp

f

)
= 4πp2r22F1

(
1− 2p, 1− 2p; 2; r2

)
, r ∈ (0, 1],

and the maximum is attained for the rotations of the function zp/(1− z)2p.

For the choice p = 1, the above results in this section are obtained in [20].
Choosing A = (1− (2β/p))λ and B = −λ in Theorem 4.3, we find that:

Corollary 4.5. Let f ∈ Tp(λ, β) for 0 < λ ≤ 1, 0 ≤ β < p and p ∈ N. Then
we have

max
f∈Tp(λ,β)

∆

(
r,
zp

f

)
= 4πλ2(p− β)2r22F1

(
(2β− 2p+ 1), (2β− 2p+ 1); 2;λ2r2

)
,

where r, 0 < r ≤ 1, and the maximum is attained for the rotations of zp/(1 −
λz)2p−2β. In particular, for f ∈ Tp(1, β) =: S∗p (β), we get Corollary 4.4.

We end this section with the following special results.
The case A = λe−iα(e−iα − (2β/p) cosα) and B = −λ, simplifies that

p

(
A

B
− 1

)
+ 1 = −e−iα(pe−iα − 2β cosα)− p+ 1

= 1− 2e−iα(p− β) cosα =: 1− ξ.
By Theorem 4.3, we obtain Yamashita’s conjecture on area maximum property
for the class Fp(α, β, λ).

Theorem 4.6. Let λ, β, α such that 0 < λ ≤ 1, 0 ≤ β < p, −π/2 < α < π/2
and p ∈ N. If the function f , defined by (2.3), belongs to the class Fp(α, β, λ),
then we have

max
f∈Fp(α,β,λ)

∆

(
r,
zp

f

)
= Eα,β,λ(r, p),

where
Eα,β,λ(r, p) = πr2λ2|ξ|22F1(1− ξ, 1− ξ; 2;λ2r2),

with ξ = 2(p − β)e−iα cosα. The maximum is attained for the rotations of
kp,α,β,λ as defined by (2.2).

The case λ = 1 of Theorem 4.6 gives:

Corollary 4.7. Let f ∈ Sα,p(β) := Fp(α, β, 1) be of the form (2.3). Then we
have

max
f∈Sα,p(β)

∆

(
r,
zp

f

)
= πr2|ξ|22F1(1− ξ, 1− ξ; 2; r2), 0 < r ≤ 1.
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Figure 1. Images of the disk Dr under g2/5,2 and g1/5,3.

The maximum is attained for the rotations of kp,α,β,1 as defined by (2.2).
In particular, for f ∈ Sα,p := Sα,p(0), one has

max
f∈Sα,p

∆

(
r,
zp

f

)
= πr2|η|22F1

(
1− η, 1− η; 2; r2

)
, η = 2pe−iα cosα

for all r ∈ (0, 1].

For the choice p = 1, Corollaries 4.5 and 4.7 are obtained in [27, Theorem 1.3]
and [21, Theorem 3 and Corollary 4], respectively.

Proofs of Theorems 4.1 and 4.3 are presented in Section 6. To see the bounds
for the Dirichlet finite function, we denote

EA(1, p) = πp2|A|2
∞∑
n=0

1

(1)n(2)n
p2n|A|2n,

EA,B(1, p) = πp2|A−B|2
∞∑
n=0

(pφ+ 1)n(pφ+ 1)n
(2)n(1)n

B2n and

Eα,β,λ(1, p) = πλ2|ξ|2
∞∑
n=0

(1− ξ)n(1− ξ)n
(2)n(1)n

λ2n.

The images of the disk Dr (r ∈ (0, 1]) under the extremal functions gA,p(z) :=

zp/kA,p(z) = e−Apz, gA,B,p(z) := zp/kA,B,p(z) = (1 + Bz)(1−A/B)p and
zp/kp,α,β,λ(z) =: lp,α,β,λ(z) = (1 − λz)ξ and numerical values of EA(r, p),
EA,B(r, p) and Eα,β,λ(r, p) are described in Figures 1–5 and Tables 1 & 2,
respectively, for several values of A,B, α, β, λ, r and p. We remind the reader
that for B = −1, EA,B(1, p) is finite only if 2 > Re(2 + p(φ + φ)/B), i.e., if
ReA > −1.
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Figure 2. Images of the disk Dr under g(1+i)/3,2 and g2/8−i/5,3.
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The image domain g1/5,−9/10,3(D0.9)

Figure 3. Images of the disk Dr under g2/5,−3/5,2 and g1/5,−9/10,3.

Table 1. Approximate values of EA(r, p) and EA,B(r, p)

p A r Approximate Values B Approximate Values
of EA(r, p) of EA,B(r, p)

2 2/5 1 2.7264 −3/5 26.19994
3 1/5 0.9 1.05631 −9/10 112.473
2 (1 + i)/3 0.8 2.34613 −1/2 10.5859
3 2/8− i/5 0.7 1.76615 −99/100 26.98
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Figure 4. Images of the disk Dr under g(1+i)/3,−0.5,2 and g2/8−i/5,0.99,3.
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Figure 5. Images of the disk Dr under l2,−π/6,1,0.9 and l3,π/4,1.5,0.6.

Table 2. Approximate values of Eα,β,λ(r, p)

p α β λ r Approximate Values of
Eα,β,λ(r, p)

2 −π/6 1 9/10 1 11.2667
3 π/4 1.5 3/5 0.9 7.1980
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In the next section, we present the following crucial lemmas which play
important roles for the proofs of our main results.

5. Preparatory results

We first present a necessary coefficient condition for a function f ∈ S∗p (A,B).

Lemma 5.1. Let f ∈ S∗p (A,B) for A ∈ C,−1 ≤ B ≤ 0, A 6= B, p ∈ N and f
be of the form (2.3). Then

∞∑
k=1

(
k2 − |kB + (A−B)p|2

)
|bk+p−1|2 ≤ |A−B|2p2

holds. Equality is attained for the function kA,B,p as defined by (1.2).

Proof. Let f ∈ S∗p (A,B) and g(z) := zp/f(z). Then by subordination princi-
ple, we obtain

zg′(z)

pg(z)
=

(B −A)zw(z)

1 +Bzw(z)
, z ∈ D,

where w(0) = 1 in D. Substituting this in the series expansion (2.3) of g, we
get

∞∑
k=1

kbk+p−1z
k−1 = −

(
(A−B)p+

∞∑
k=1

(
kB + (A−B)p

)
bk+p−1z

k

)
w(z).

It is equivalent to

n∑
k=1

kbk+p−1z
k−1 +

∞∑
k=n+1

ckz
k−1

= −

(
(A−B)p+

n−1∑
k=1

(
kB + (A−B)p

)
bk+p−1z

k

)
w(z)

for certain coefficients ck. By Clunie’s method [6] (see also [7,25,26]) for n ∈ N,
since |w(z)| < 1 in D, we find

n∑
k=1

k2|bk+p−1|2r2k−2 ≤ |A−B|2p2 +

n−1∑
k=1

∣∣kB + (A−B)p
∣∣2|bk+p−1|2r2k,

it holds for all r ∈ (0, 1) and for all large n. It is equivalent to

(5.1)

n∑
k=1

k2|bk+p−1|2r2k−2 −
n−1∑
k=1

∣∣kB + (A−B)p
∣∣2|bk+p−1|2r2k ≤ |A−B|2p2.

If we take r → 1− and allow n→∞, then we get the desired inequality

∞∑
k=1

(
k2 −

∣∣kB + (A−B)p
∣∣2) |bk+p−1|2 ≤ |A−B|2p2.
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Equality occurs in the above inequality for the function kA,B,p as defined by
(1.2). The proof of Lemma 5.1 is complete. �

Lemma 5.2. Let 0 < |A| ≤ 1 and f ∈ S∗p (A, 0). For |z| < r, suppose that

zp

f(z)
= 1 +

∞∑
k=1

bk+p−1z
k and e−Apz = 1 +

∞∑
k=1

ck+p−1z
k, r ∈ (0, 1].

Then for all N ∈ N,

(5.2)

N∑
k=1

k|bk+p−1|2r2k ≤
N∑
k=1

k|ck+p−1|2r2k

holds.

Proof. It is enough to prove the lemma for 0 < A ≤ 1. From the relation (5.1)
for B = 0, we get

n−1∑
k=1

(k2 −A2p2r2)|bk+p−1|2r2k−2 + n2|bn+p−1|2r2n−2 ≤ A2p2.

Multiplying by r2 on both sides, we obtain

(5.3)

n−1∑
k=1

(k2 −A2p2r2)|bk+p−1|2r2k + n2|bn+p−1|2r2n ≤ A2p2r2.

Obviously, the series expansion of e−Apz shows that the equality, when n→∞,
in (5.3) attains with bk+p−1 = ck+p−1.

We split remaining part of the proof into three following steps.

Step-I: Cramer’s rule.
We consider the inequalities corresponding to (5.3) for n = 1, 2, . . . , N and
multiply the nth coefficient by a factor λn,N . These factors are chosen in such
a way that the addition of the left sides of the modified inequalities results the
left side of (5.2) and hence from the modified inequalities, we get

(5.4)

N∑
k=1

k|bk+p−1|2r2k ≤ A2p2r2λn,N .

First, we shall evaluate the suitable multipliers λn,N by Cramer’s rule. Sec-
ondly, in Step-II, we will prove that these multipliers are all positive. Finally,
from (5.2) and (5.4), we will prove the inequality

(5.5) A2p2r2λn,N ≤
N∑
k=1

k|ck+p−1|2r2k

in Step-III. Here ck+p−1 = (Ap)k/(k!).
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For the calculation of the factors λn,N , we get the following system of linear
equations

(5.6) k = k2λk,N +

N∑
n=k+1

λn,N (k2 −A2p2r2), k = 1, 2, . . . , N.

Since the matrix of this system is an upper triangular matrix with positive
integers as diagonal elements, the solution of this system is uniquely deter-
mined. Cramer’s rule allows us to write the solution of the system (5.6) in the
form

λn,N =
((n− 1)!)2

(N !)2
DetAn,N ,

where An,N is the (N − n+ 1)× (N − n+ 1) matrix constructed as follows:

An,N =


n n2 −A2p2r2 · · · n2 −A2p2r2

n+ 1 (n+ 1)2 · · · (n+ 1)2 −A2p2r2

...
...

...
...

N 0 · · · N2

 .
Determinants of these matrices can be obtained by expanding, according to
Laplace’s rule with respect to the last row, wherein the first coefficient is N
and the last one is N2. The rest of the entries are zeros. This expansion and
a mathematical induction lead to the following formula: if k ≤ N − 1, then

λk,N = λk,N−1 −
1

N

(
1− A2p2r2

k2

) N−1∏
m=k+1

(
A2p2r2

m2

)
.

We see that the sequence {λk,N} is strictly decreasing in N when k ∈ N is fixed
and N ≥ k, i.e., λk,N < λk,N−1 with

(5.7) λk := lim
N→∞

λk,N =
1

k
−
(

1− A2p2r2

k2

) ∞∑
n=k+1

1

n

n−1∏
m=k+1

(
A2p2r2

m2

)
.

To prove that λk,N > 0 for all N ∈ N, 1 ≤ k ≤ N , it is adequate to show that
λk ≥ 0 for k ∈ N. This will be completed in Step II. But before that we want
to remark that the proof of the said inequality is sufficient for the proof of the
theorem, since, as we remarked for (5.3), equality holds for bk+p−1 = ck+p−1.

Step-II: Positivity of the multipliers.
In this step, we show that

∞∑
n=k+1

1

n

n−1∏
m=k+1

(
A2p2r2

m2

)
≤ 1

k
(

1− A2p2r2

k2

) =
1

k

∞∑
n=k+1

(
A2p2r2

k2

)n
,

which is indeed easy to prove, i.e., from (5.7), λk ≥ 0.
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Step-III:
Since the sequence {λn,N} is strictly decreasing in N for each fixed n, n ≤ N ,
i.e., λn,N < λn,n, so that

A2p2r2λn,N < A2p2r2λn,n =
A2p2r2

n

< A2p2r2 ≤
N∑
k=1

k(Ap)2k

(k!)2
r2k.

This means that inequality (5.5) holds. The proof of our lemma is complete. �

Lemma 5.3. Let f ∈ S∗p (A,B) for A ∈ C,−1 ≤ B < 0, A 6= B and p ∈ N.
Suppose that

(1−Bz)(1−(A/B))p = 1 +

∞∑
k=1

dk+p−1z
k and

zp

f(z)
= 1 +

∞∑
k=1

bk+p−1z
k

for all r, 0 < r ≤ 1. Then the inequality

(5.8)

N∑
k=1

k|bk+p−1|2r2k ≤
N∑
k=1

k|dk+p−1|2r2k

is valid for all N ∈ N.

Proof. Multiplying by r2 on both sides of the inequality (5.1), we obtain

n−1∑
k=1

(
k2 −

∣∣kB + (A−B)p
∣∣2r2) |bk+p−1|2r2k + n2|bn+p−1|2r2n ≤ |A−B|2p2r2.

Set for an abbreviation φ := (A/B) − 1 and rewrite the last inequality in the
form

(5.9)

n−1∑
k=1

(
k2 − |k + pφ|2B2r2

)
|bk+p−1|2r2k + n2|bn+p−1|2r2n ≤ B2p2r2|φ|2.

It is apparent that in the inequality (5.9), the equality is attained for the
function (1−Bz)(1−(A/B))p with bk+p−1 = dk+p−1, when n→∞.

We split remaining part of the proof into three following steps.

Step-I: Cramer’s rule.
We consider the inequalities corresponding to (5.9) for n = 1, 2, . . . , N and
multiply the nth coefficient by a factor λn,N . These factors are chosen in such
a way that the addition of the left sides of the modified inequalities results the
left side of (5.8) leading to the inequality

(5.10)

N∑
k=1

k|bk+p−1|2r2k ≤ B2p2r2|φ|2λn,N .
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First, we solve for the suitable multipliers λn,N by Cramer’s rule. Secondly, in
Step II, we prove that these multipliers are all positive. Finally, from (5.8) and
(5.10), we prove the inequality

(5.11) B2p2r2|φ|2λn,N ≤
N∑
k=1

k|dk+p−1|2r2k, n = 1, 2, . . . , N

in Step III. Here dk+p−1 = Bk(pφ)k/(k!).
For computing the factors λn,N , we solve the following system of linear

equations

(5.12) k = k2λk,N +
(
k2 − |k + pφ|2B2r2

) N∑
n=k+1

λn,N , k = 1, 2, . . . , N.

Since the matrix of this system is an upper triangular matrix with positive in-
tegers as diagonal elements, the solution of this system is uniquely determined.
Cramer’s rule allows us to write the solution of the system (5.12) in the form

λn,N =
((n− 1)!)2

(N !)2
DetAn,N ,

where An,N is the (N − n+ 1)× (N − n+ 1) matrix constructed as follows:

An,N =


n n2 − |n+ pφ|2B2r2 · · · n2 − |n+ pφ|2B2r2

n+ 1 (n+ 1)2 · · · (n+ 1)2 − |n+ 1 + pφ|2B2r2

...
...

...
...

N 0 · · · N2

 .
Determinants of these matrices can be found by expanding according to
Laplace’s rule with respect to the last row, wherein the first coefficient is N
and the last one is N2. The rest of the entries are zeros. This expansion and
a mathematical induction result in the following formula. If k ≤ N − 1, then

(5.13) λk,N = λk,N−1 −
1

N

(
1−

∣∣∣∣1 +
pφ

k

∣∣∣∣2B2r2

)
N−1∏
m=k+1

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)
.

Note that Uk,p :=
(

1− |1 + (pφ/k)|2B2r2
)

in (5.13) may be positive as well

as negative for some k ∈ N. For instance, see Table 3.
Case (i): Suppose that Uk,p is non-positive.
From (5.13), we see that, the sequence {λk,N} is strictly increasing in N for

every fixed k ∈ N, k ≤ N − 1, i.e.,

λk,N − λk,N−1 > 0

so that

λk,N > λk,N−1 > · · · > λk,k = 1/k > 0,

and thus λk ≥ 0 when N →∞ as required.
Case (ii): Suppose that Uk,p is non-negative.
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Table 3. Signs of the constant Uk,p

k A B p r Uk,p
1 0.9 −0.6 2 0.4 0.0784
2 3 −0.4 2 0.8 −4.76
3 3− i −0.9 2 0.2 0.8666
2 0.8 −0.7 5 0.9 −6.5350
3 0.5 −1 5 0.6 0.19
2 2 + 3i −0.8 5 0.3 −7.5221

From (5.13), for each fixed k ∈ N, N ≥ k, the sequence {λk,N} is strictly
decreasing in N , i.e., λk,N − λk,N−1 < 0 with

(5.14)

λk := lim
N→∞

λk,N

=
1

k
−

(
1−

∣∣∣∣1 +
pφ

k

∣∣∣∣2B2r2

) ∞∑
n=k+1

1

n

n−1∏
m=k+1

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)
.

To show that λk,N > 0 for all N ∈ N, k ∈ [1, N ], it is enough to show that
λk ≥ 0 for k ∈ N. Proof of this will be completed in Step II. But before that,
we want to note that the proof of the said inequality is adequate for the proof
of the theorem, since, we observed in the beginning of the proof, equality is
obtained for bk+p−1 = dk+p−1.

Step-II: Positivity of the multipliers.
Let for an abbreviation

Sk =

∞∑
n=k+1

1

n

n−1∏
m=k+1

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)
, k ∈ N.

We now show that

Sk ≤
1

k

(
1−

∣∣∣1 + pφ
k

∣∣∣2B2r2
) .

From the equation (5.14), we get

λk =
1

k
− Sk +

(∣∣∣∣1 +
pφ

k

∣∣∣∣2B2r2

)
Sk.

Again set for an abbreviation

Tk =
1

k
+

(∣∣∣∣1 +
pφ

k

∣∣∣∣2B2r2

)
Sk.
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It is enough to prove that

(5.15) Tk ≤
1

k

(
1−

∣∣∣1 + pφ
k

∣∣∣2B2r2
) .

To prove (5.15) we use the inequality

(5.16)
1

n

(
1−

∣∣∣1 + pφ
n

∣∣∣2B2r2
) >

1

(n+ 1)

(
1−

∣∣∣1 + pφ
n+1

∣∣∣2B2r2
)

(this inequality follows from the fact that n
(

1− |1 + (pφ/n)|2B2r2
)

is increas-

ing in n which can be easily verified by the derivative test) and the identity

(5.17)
1

n

(
1−

∣∣∣1 + pφ
n

∣∣∣2B2r2
) =

1

n
+

∣∣∣1 + pφ
n

∣∣∣2B2r2

n

(
1−

∣∣∣1 + pφ
n

∣∣∣2B2r2
) ,

which are admissible for each n ∈ N. Repeated application of (5.16) and (5.17)
for n = k, k + 1, . . . , Q results in the inequality

1

k

(
1−

∣∣∣1 + pφ
k

∣∣∣2B2r2
) >

Q∑
n=k

1

n

n−1∏
m=k

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)

+

Q∏
m=k

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)

Q

(
1−

∣∣∣1 + pφ
Q

∣∣∣2B2r2
)

=: Sk,Q +Rk,Q for k ≤ Q.

Since Rk,Q > 0, allow the limit as Q→∞, we get

1

k

(
1−

∣∣∣1 + pφ
k

∣∣∣2B2r2
) ≥ lim

T→∞
Sk,Q =

∞∑
n=k

1

n

n−1∏
m=k

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)
= Qk,

and we complete the inequality (5.15).

Step-III:
In this step, we prove (5.11). Taking the left side of (5.11) for N = 2, n = 1
and using the inequality (5.13), we obtain

B2p2r2|φ|2λ1,2 = B2p2r2|φ|2
(
λ1,1 −

1

2

(
1− |1 + pφ|2B2r2

))
=
B2p2r2|φ|2

2
+
B4p2r4|φ|2|1 + pφ|2

2
(since λ1,1 = 1)
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≤ B2p2r2|φ|2 +
B4p2r4|φ|2|1 + pφ|2

2
=

2∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k.

Since, dk+p−1 = Bk(pφ)k/(k!), then the inequality (5.11) holds for N = 2,
n = 1.

Now, we can complete the proof by the method of induction. Assume that
the inequality (5.11) is true for N = m, i.e.,

(5.18) B2p2r2|φ|2λn,m ≤
m∑
k=1

k|dk+p−1|2r2k, n = 1, 2, . . . ,m.

Then for N = m+ 1, using the inequality (5.13), we deduce that

B2p2r2|φ|2λn,m+1

= B2p2r2|φ|2
[
λn,m −

1

m+ 1

(
1−

∣∣∣∣1 +
pφ

n

∣∣∣∣2B2r2

)

×
m∏

t=n+1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)]

≤
m∑
k=1

k|dk+p−1|2r2k −
1

m+ 1

(
1−

∣∣∣∣1 +
pφ

n

∣∣∣∣2B2r2

)

×
m∏

t=n+1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2 (by (5.18))

=

m∑
k=1

k|dk+p−1|2r2k −
1

m+ 1

m∏
t=n+1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2

+
1

m+ 1

m∏
t=n

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2

≤
m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

1

m+ 1

m∏
t=n

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2,

since dk+p−1 = Bk(pφ)k/(k!). The last inequality implies that

B2p2r2|φ|2λn,m+1 ≤
m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k

+
1

m+ 1

m∏
t=1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2

or equivalently,

B2p2r2|φ|2λn,m+1
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≤
m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

(m+ 1)(B2r2)m+1

(1)2m+1

m∏
t=1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2
)

(1)2mp
2|φ|2

=

m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

(m+ 1)(B2r2)m+1

(1)2m+1

m∏
t=1

(
|t+ pφ|2

)
p2|φ|2

=

m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

(m+ 1)(B2r2)m+1

(1)2m+1

|(pφ)m+1|2

=

m+1∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k.

Hence, we obtain the desired inequality (5.11).
The proof of Lemma 5.3 is complete. �

6. Proofs of the main results

Proof of Theorem 3.1

Let f ∈ S∗p (A,B). We apply the theorem of Hallenbeck and Ruschewey [12,
Theorem 2] and get

f(z)

zp
≺ 1

(1 +Bz)(1−(A/B))p
, z ∈ D,

so that

(6.1)
zp

f(z)
≺ (1 +Bz)(1−(A/B))p =: χA,B,p(z), z ∈ D,

where

χA,B,p(z) =
zp

kA,B,p(z)
=

{
(1 +Bz)(1−(A/B))p if B 6= 0
e−Apz if B = 0

and the function kA,B,p defined in (1.2). For B 6= 0, we rewrite the quantity
χA,B,p(z) in hypergeometric function notation and get

χA,B,p(z) =

{
2F1(pφ, 1; 1;−Bz) if B 6= 0
e−Apz if B = 0

=:

∞∑
n=0

dn+p−1z
n(6.2)

with φ = (A/B)− 1 and

dn+p−1 =

{
(−1)n(pφ)nBn

n! if B 6= 0
(−1)n(Ap)n

n! if B = 0.

From (6.1), zp/f and χA,B,p are two analytic functions and have the series
representation (2.3) and (6.2) (with bp−1 = 1 = dp−1), respectively. Then by
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Rogosinski’s result (see [8, 26]), we get

k∑
n=0

|bn+p−1|2r2n ≤
k∑

n=0

|dn+p−1|2r2n

for 0 < r < 1 and k ∈ N. Thus, from (6.1) and (6.2), we obtain

k∑
n=0

|bn+p−1|2r2n ≤


k∑

n=0

(pφ)n(pφ)n
(n!)2

B2nr2n if B 6= 0

k∑
n=0

1

(n!)2
(
p|A|

)2n
r2n if B = 0.

If we take r → 1 and allow k →∞, then we find the inequality

1 +

∞∑
n=1

|bn+p−1|2 ≤


∞∑
n=0

(pφ)n(pφ)n
(n!)2

B2n if B 6= 0

∞∑
n=0

1

(n!)2
(
p|A|

)2n
if B = 0

=

{
2F1

(
pφ, pφ; 1;B2

)
if B 6= 0

J0(2ip|A|) if B = 0,

where J0(z) is the Bessel function of zero order (see [30] for its definition).
Now, we evaluate the integral means for the function zp/f and get

L1(r, f, p) := r2pI1(r, f, p) =
1

2π

∫ 2π

0

r2p

|f(reiθ)|2
dθ =

1

2π

∫ 2π

0

∣∣∣∣ zpf(z)

∣∣∣∣2 dθ
= 1 +

∞∑
n=1

|bn+p−1|2r2n

≤ 1 +

∞∑
n=1

|bn+p−1|2,

which establishes the desired inequality. The result is sharp and it can be easily
verified by considering the function zp/kA,B,p, defined in (1.2).

Proof of Theorem 4.1

Suppose f ∈ S∗p (A), 0 < |A| ≤ 1 and p ∈ N. It is enough to prove the
theorem for 0 < A ≤ 1. By the definition of S∗p (A), we get

zf ′(z)

pf(z)
≺ 1 +Az =

zk′A,p(z)

pkA,p(z)
, z ∈ D.

Let g(z) = zp/f(z) be of the form (2.3). Then using the theorem of Hallenbeck
and Ruschewey [12, Theorem 2] and subordinate property, we get

g(z) ≺ e−Apz =
zp

kA,p(z)
.
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By rewriting the last subordination relation in power series form, we have

1 +

∞∑
k=1

bk+p−1z
k ≺ e−Apz = 1 +

∞∑
k=1

ck+p−1z
k,

where ck+p−1 = (−1)k(Ap)k/(k!). Now, by Lemma 5.2, for r ∈ (0, 1], we have

N∑
k=1

k|bk+p−1|2r2k ≤
N∑
k=1

k|ck+p−1|2r2k, N ∈ N.

If we assume N →∞, then it follows

π

∞∑
k=1

k|bk+p−1|2r2k ≤ π
∞∑
k=1

k|ck+p−1|2r2k,

i.e.,

∆

(
r,
zp

f

)
≤ ∆

(
r,

zp

kA,p

)
.

It is easy to simplify that

∆ (r, zp/kA,p) = π|A|2p2r20F1(2, |A|2p2r2) = EA(r, p),

then we get the desired identity (4.1). The maximum is attained by rotations
of kA,p(z) = zpeApz.

The proof of our theorem is complete. �

Proof of Theorem 4.3

Let g(z) = zp/f(z) be of the form (2.3). Now, by the definition of S∗p (A,B),
we obtain

zf ′(z)

pf(z)
≺ 1 +Az

1 +Bz
=
zk′A,B,p(z)

pkA,B,p(z)
.

By Hallenbeck and Ruschewey’s result [12] and subordinate principle, we find
that

g(z) ≺ (1 +Bz)(1−(A/B))p =
zp

kA,B,p(z)
.

Suppose, zp/kA,B,p has the power series representation 1+
∑∞
k=1 dk+p−1z

n with
dk+p−1 = (−1)kBk(pφ)k/(k!). Then it follows from Lemma 5.3, for N ∈ N,

N∑
k=1

k|bk+p−1|2r2k ≤
N∑
k=1

k|dk+p−1|2r2k, 0 < r ≤ 1,

which implies that

π

∞∑
k=1

k|bk+p−1|2r2k ≤ π
∞∑
k=1

k|dk+p−1|2r2p,

i.e.,

∆

(
r,
zp

f

)
≤ ∆

(
r,

zp

kA,B,p

)
.
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By the area formula for zp/kA,B,p, we easily have

π−1∆

(
r,

z

kA,B,p

)
=

∞∑
k=1

k|dk+p−1|2r2k

=

∞∑
k=1

k
(pφ)k(p)φ)k

(1)2k
B2kr2k

= B2p2r2|φ|2
∞∑
k=0

(pφ+ 1)k(pφ+ 1)k
(2)k(1)k

B2kr2k.

Hence,

∆

(
r,

z

kA,B,p

)
= π|A−B|2p2r22F1

(
pφ+ 1, pφ+ 1; 2;B2r2

)
= EA,B(r, p),

and the proof of Theorem 3.4 is complete. �

7. Concluding remarks and open problem

For −1 ≤ B ≤ 0 and A ∈ C, A 6= B, define

Cp(A,B) :=

{
f ∈ Ap :

1

p

(
1 +

zf ′′(z)

f ′(z)

)
≺ 1 +Az

1 +Bz
, z ∈ D

}
.

The choices A = 1− (2β/p) and B = −1 turn the class Cp(A,B) into the class
Cp(β), the class of p-valent convex of order β. The class Cp(0) =: Cp is the usual
class of p-valent convex functions. The results of this paper (e.g. Theorems 4.1
and 4.3) motivate the following problems for further research in this direction:

Open problem 7.1. It would be interesting to know the solution of the
maximal area integral problem for functions of type zp/f when f ranges over
Cp(A,B). In particular, the problem is still open for f ∈ Cp(β), 0 ≤ β < p.
The case p = 1 is also stated in [21] (see also [20,27]).
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