DOI QR코드

DOI QR Code

The Candidate Tumor Suppressor Gene SLC8A2 Inhibits Invasion, Angiogenesis and Growth of Glioblastoma

  • Qu, Mingqi (Department of Neurosurgery, Henan Provincial People's Hospital) ;
  • Yu, Ju (Department of Neurosurgery, the Second Affiliated Hospital of Soochow University) ;
  • Liu, Hongyuan (Department of Neurosurgery, Mianyang Central Hospital) ;
  • Ren, Ying (Department of Pathology, People's Hospital of Zhengzhou University) ;
  • Ma, Chunxiao (Department of Neurosurgery, Henan Provincial People's Hospital) ;
  • Bu, Xingyao (Department of Neurosurgery, Henan Provincial People's Hospital) ;
  • Lan, Qing (Department of Neurosurgery, the Second Affiliated Hospital of Soochow University)
  • Received : 2017.06.26
  • Accepted : 2017.08.20
  • Published : 2017.10.31

Abstract

Glioblastoma is the most frequent and most aggressive brain tumor in adults. Solute carrier family 8 member 2 (SLC8A2) is only expressed in normal brain, but not present in other human normal tissues or in gliomas. Therefore, we hypothesized that SLC8A2 might be a glioma tumor suppressor gene and detected the role of SLC8A2 in glioblastoma and explored the underlying molecular mechanism. The glioblastoma U87MG cells stably transfected with the lentivirus plasmid containg SLC8A2 (U87MG-SLC8A2) and negative control (U87MG-NC) were constructed. In the present study, we found that the tumorigenicity of U87MG in nude mice was totally inhibited by SLC8A2. Overexpression of SLC8A2 had no effect on cell proliferation or cell cycle, but impaired the invasion and migration of U87MG cells, most likely through inactivating the extracellular signal-related kinases (ERK)1/2 signaling pathway, inhibiting the nuclear translocation and DNA binding activity of nuclear factor kappa B ($NF-{\kappa}B$), reducing the level of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA)-its receptor (uPAR) system (ERK1/2-$NF-{\kappa}B$-MMPs/uPA-uPAR), and altering the protein levels of epithelial to mesenchymal transitions (EMT)-associated proteins E-cardherin, vimentin and Snail. In addition, SLC8A2 inhibited the angiogenesis of U87MG cells, probably through combined inhibition of endothelium-dependent and endothelium-nondependent angiogenesis (vascular mimicry pattern). Totally, SLC8A2 serves as a tumor suppressor gene and inhibits invasion, angiogenesis and growth of glioblastoma.

Keywords

References

  1. Arbab, A.S., Jain, M., and Achyut, B.R. (2015). Vascular mimicry: the next big glioblastoma target. Biochem. Physiol. 4.
  2. Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-529.
  3. Chen, P.N., Hsieh, Y.S., Chiou, H.L., and Chu, S.C. (2005). Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biol. Int. 156, 141-150. https://doi.org/10.1016/j.cbi.2005.08.005
  4. Chintala, S.K., Tonn, J.C., and Rao, J.S. (1999). Matrix metalloproteinases and their biological function in human gliomas. Int. J. Dev. Neurosci. 17, 495-502. https://doi.org/10.1016/S0736-5748(99)00010-6
  5. Claes, A., Idema, A.J., and Wesseling, P. (2007). Diffuse glioma growth: a guerilla war. Acta Neuropathol. 114, 443-458. https://doi.org/10.1007/s00401-007-0293-7
  6. Futamura, M., Kamino, H., Miyamoto, Y., Kitamura, N., Nakamura, Y., Ohnishi, S., Masuda, Y., and Arakawa, H. (2007). Possible role of semaphorin 3F, a candidate tumor suppressor gene at 3p21.3, in p53-regulated tumor angiogenesis suppression. Cancer Res. 67, 1451-1460. https://doi.org/10.1158/0008-5472.CAN-06-2485
  7. Gondi, C.S., Lakka, S.S., Dinh, D.H., Olivero, W.C., Gujrati, M., and Rao, J.S. (2004). Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA). inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol. 1, 165-176. https://doi.org/10.1017/S1740925X04000237
  8. Gray, G.K., McFarland, B.C., Nozell, S.E., and Benveniste, E.N. (2014). NF-kappaB and STAT3 in glioblastoma: therapeutic targets coming of age. Exp. Rev. Neurotherapeutics 14, 1293-1306. https://doi.org/10.1586/14737175.2014.964211
  9. Griscelli, F., Li, H., Cheong, C., Opolon, P., Bennaceur-Griscelli, A., Vassal, G., Soria, J., Soria, C., Lu, H., Perricaudet, M., et al. (2000). Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model. Proc. Natl. Acad. Sci. USA 97, 6698-6703. https://doi.org/10.1073/pnas.110134297
  10. Guo, G., Yao, W., Zhang, Q., and Bo, Y. (2013). Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLoS one 8, e72079. https://doi.org/10.1371/journal.pone.0072079
  11. Guo, Q., Zhao, Y., Chen, J., Hu, J., Wang, S., Zhang, D., and Sun, Y. (2014). BRAF-activated long non-coding RNA contributes to colorectal cancer migration by inducing epithelial-mesenchymal transition. Oncol. Lett. 8, 869-875. https://doi.org/10.3892/ol.2014.2154
  12. Hartmann, C., Johnk, L., Kitange, G., Wu, Y., Ashworth, L.K., Jenkins, R.B., and Louis, D.N. (2002). Transcript map of the 3.7-Mb D19S112- D19S246 candidate tumor suppressor region on the long arm of chromosome 19. Cancer Res. 62, 4100-4108.
  13. Jan, H.J., Lee, C.C., Shih, Y.L., Hueng, D.Y., Ma, H.I., Lai, J.H., Wei, H.W., and Lee, H.M. (2010). Osteopontin regulates human glioma cell invasiveness and tumor growth in mice. Neuro-oncology 12, 58- 70. https://doi.org/10.1093/neuonc/nop013
  14. Jung, J.S., Jung, K., Kim, D.H., and Kim, H.S. (2012). Selective inhibition of MMP-9 gene expression by mangiferin in PMAstimulated human astroglioma cells: involvement of PI3K/Akt and MAPK signaling pathways. Pharmacol. Res. 66, 95-103. https://doi.org/10.1016/j.phrs.2012.02.013
  15. Karin, M., Cao, Y., Greten, F.R., and Li, Z.W. (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2, 301-310. https://doi.org/10.1038/nrc780
  16. Keyse, S.M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr. Opin. Cell Biol. 12, 186-192. https://doi.org/10.1016/S0955-0674(99)00075-7
  17. Kimba, Y., Abe, T., Wu, J.L., Inoue, R., Fukiki, M., Kohno, K., and Kobayashi, H. (2005). Mutant IkappaBalpha suppresses hypoxiainduced VEGF expression through downregulation of HIF-1alpha and COX-2 in human glioma cells. Oncol. Res. 15, 139-149. https://doi.org/10.3727/096504005776367898
  18. Kwiatkowska, A., and Symons, M. (2013). Signaling determinants of glioma cell invasion. Adv. Exp. Med. Biol. 986, 121-141.
  19. Lakka, S.S., Bhattacharya, A., Mohanam, S., Boyd, D., and Rao, J.S. (2001). Regulation of the uPA gene in various grades of human glioma cells. Int. J. Oncol. 18, 71-79.
  20. Lee, S.Y., Lee, H.Y., Kim, S.D., Jo, S.H., Shim, J.W., Lee, H.J., Yun, J., and Bae, Y.S. (2008). Lysophosphatidylserine stimulates chemotactic migration in U87 human glioma cells. Biochem. Biophys. Res. Commun. 374, 147-151. https://doi.org/10.1016/j.bbrc.2008.06.117
  21. Lee, E.J., Lee, S.J., Kim, S., Cho, S.C., Choi, Y.H., Kim, W.J., and Moon, S.K. (2013). Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NFkappaB/ AP-1 pathway: involvement of the p21WAF1 expression. Cell. Signal. 25, 2025-2038. https://doi.org/10.1016/j.cellsig.2013.06.004
  22. Lefranc, F., Rynkowski, M., DeWitte, O., and Kiss, R. (2009). Present and potential future adjuvant issues in high-grade astrocytic glioma treatment. Adv. Tech. Stand Neurosurg. 34, 3-35.
  23. Li, L., Gondi, C.S., Dinh, D.H., Olivero, W.C., Gujrati, M., and Rao, J.S. (2007). Transfection with anti-p65 intrabody suppresses invasion and angiogenesis in glioma cells by blocking nuclear factor-kappaB transcriptional activity. Clin. Cancer Res. 13, 2178-2190. https://doi.org/10.1158/1078-0432.CCR-06-1711
  24. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer, B.W., and Kleihues, P. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97-109. https://doi.org/10.1007/s00401-007-0243-4
  25. Molina, J.R., Hayashi, Y., Stephens, C., and Georgescu, M.M. (2010). Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12, 453-463. https://doi.org/10.1593/neo.10126
  26. Nakano, A., Tani, E., Miyazaki, K., Yamamoto, Y., and Furuyama, J. (1995). Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. J. Neurosurg. 83, 298-307. https://doi.org/10.3171/jns.1995.83.2.0298
  27. Paulis, Y.W., Soetekouw, P.M., Verheul, H.M., Tjan-Heijnen, V.C., and Griffioen, A.W. (2010). Signalling pathways in vasculogenic mimicry. Biochim. Biophys. Acta. 1806, 18-28.
  28. Pu, P., Kang, C., Li, J., and Jiang, H. (2004). Antisense and dominantnegative AKT2 cDNA inhibits glioma cell invasion. Tumour Biol. 25, 172-178. https://doi.org/10.1159/000081099
  29. Qu, M., Jiao, H., Zhao, J., Ren, Z.P., Smits, A., Kere, J., and Nister, M. (2010). Molecular genetic and epigenetic analysis of NCX2/SLC8A2 at 19q13.3 in human gliomas. Neuropathol. Appl. Neurobiol. 36, 198-210. https://doi.org/10.1111/j.1365-2990.2010.01070.x
  30. Quednau, B.D., Nicoll, D.A., and Philipson, K.D. (2004). The sodium/calcium exchanger family-SLC8. Pflugers Arch. 447, 543-548. https://doi.org/10.1007/s00424-003-1065-4
  31. Rao, J.S. (2003). Molecular mechanisms of glioma invasiveness: the role of proteases. Nat. Rev. Cancer 3, 489-501. https://doi.org/10.1038/nrc1121
  32. Ravi, R., and Bedi, A. (2004). NF-kappaB in cancer--a friend turned foe. Drug Resist. Updat. 7, 53-67. https://doi.org/10.1016/j.drup.2004.01.003
  33. Reifenberger, G., and Louis, D.N. (2003). Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J. Neuropathol. Exp. Neurol. 62, 111-126. https://doi.org/10.1093/jnen/62.2.111
  34. Rong, X., Huang, B., Qiu, S., Li, X., He, L., and Peng, Y. (2016). Tumor-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation. Oncotarget 7, 83976-83986.
  35. Rothwarf, D.M., and Karin, M. (1999). The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Science's STKE 1999, Re1.
  36. Shi, M.D., Shih, Y.W., Lee, Y.S., Cheng, Y.F., and Tsai, L.Y. (2013). Suppression of 12-O-tetradecanoylphorbol-13-acetate-induced MCF- 7 breast adenocarcinoma cells invasion/migration by alpha-tomatine through activating PKCalpha/ERK/NF-kappaB-dependent MMP- 2/MMP-9 expressions. Cell Biochem. Biophys. 66, 161-174. https://doi.org/10.1007/s12013-012-9465-8
  37. Sounni, N.E., and Noel, A. (2013). Targeting the tumor microenvironment for cancer therapy. Clin. Chem. 59, 85-93. https://doi.org/10.1373/clinchem.2012.185363
  38. Sui, X., Kong, N., Ye, L., Han, W., Zhou, J., Zhang, Q., He, C., and Pan, H. (2014). p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 344, 174-179. https://doi.org/10.1016/j.canlet.2013.11.019
  39. Szarvas, T., Jager, T., Droste, F., Becker, M., Kovalszky, I., Romics, I., Ergun, S., and Rubben, H. (2009). Serum levels of angiogenic factors and their prognostic relevance in bladder cancer. Pathol. Oncol. Res. 15, 193-201. https://doi.org/10.1007/s12253-008-9107-z
  40. Verhoeff, J.J., van Tellingen, O., Claes, A., Stalpers, L.J., van Linde, M.E., Richel, D.J., Leenders, W.P., and van Furth, W.R. (2009). Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer 9, 444. https://doi.org/10.1186/1471-2407-9-444
  41. Verma, I.M., Stevenson, J.K., Schwarz, E.M., Van Antwerp, D., and Miyamoto, S. (1995). Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 9, 2723-2735. https://doi.org/10.1101/gad.9.22.2723
  42. Vigneswaran, K., Neill, S., and Hadjipanayis, C.G. (2015). Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann. Transl. Med. 3, 95.
  43. von Deimling, A., Fimmers, R., Schmidt, M.C., Bender, B., Fassbender, F., Nagel, J., Jahnke, R., Kaskel, P., Duerr, E.M., Koopmann, J., et al. (2000). Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors. J. Neuropathol. Exp. Neurol. 59, 544-558. https://doi.org/10.1093/jnen/59.6.544
  44. Wang, H., Xu, T., Jiang, Y., Xu, H., Yan, Y., Fu, D., and Chen, J. (2015). The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 17, 239-255. https://doi.org/10.1016/j.neo.2015.02.002
  45. Yamamoto, Y., and Gaynor, R.B. (2004). IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem. Sci. 29, 72- 79. https://doi.org/10.1016/j.tibs.2003.12.003
  46. Yan, C., and Boyd, D.D. (2007). Regulation of matrix metalloproteinase gene expression. J. Cell. Physiol. 211, 19-26. https://doi.org/10.1002/jcp.20948
  47. Zhang, M., Ye, G., Li, J., and Wang, Y. (2015). Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy. Brain Tumor Pathol. 32, 229-236. https://doi.org/10.1007/s10014-015-0233-5

Cited by

  1. Matrine inhibits the invasive and migratory properties of human hepatocellular carcinoma by regulating epithelial-mesenchymal transition vol.18, pp.1, 2018, https://doi.org/10.3892/mmr.2018.9023
  2. Genetic Profiles Playing Opposite Roles of Pathogenesis in Schizophrenia and Glioma vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/3656841
  3. Identification of microenvironment‐related genes with prognostic value in clear cell renal cell carcinoma vol.121, pp.7, 2017, https://doi.org/10.1002/jcb.29654
  4. Role of Sodium/Calcium Exchangers in Tumors vol.10, pp.9, 2017, https://doi.org/10.3390/biom10091257
  5. CeRNA Network Analysis Representing Characteristics of Different Tumor Environments Based on 1p/19q Codeletion in Oligodendrogliomas vol.12, pp.9, 2020, https://doi.org/10.3390/cancers12092543
  6. Novel insights into clear cell renal cell carcinoma prognosis by comprehensive characterization of aberrant alternative splicing signature: a study based on large-scale sequencing data vol.12, pp.1, 2017, https://doi.org/10.1080/21655979.2021.1906096