DOI QR코드

DOI QR Code

The Inactivation of ERK1/2, p38 and NF-kB Is Involved in the Down-Regulation of Osteoclastogenesis and Function by A2B Adenosine Receptor Stimulation

  • Kim, Bo Hyun (Department of Medical Science, College of Medical Sciences, Soonchunhyang University) ;
  • Oh, Ju Hee (Department of Medical Science, College of Medical Sciences, Soonchunhyang University) ;
  • Lee, Na Kyung (Department of Medical Science, College of Medical Sciences, Soonchunhyang University)
  • 투고 : 2017.06.16
  • 심사 : 2017.09.21
  • 발행 : 2017.10.31

초록

A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. A2BAR stimulation with its specific agonist BAY 60-6583 was sufficient to inhibit the activation of ERK1/2, p38 MAP kinases and $NF-{\kappa}B$ by RANKL as well as it abrogated cell-cell fusion in the late stage of osteoclast differentiation. Stimulation of A2BAR suppressed the expression of osteoclast marker genes, such as c-Fos, TRAP, Cathepsin-K and NFATc1, induced by RANKL, and transcriptional activity of NFATc1 was also inhibited by stimulation of A2BAR. A2BAR stimulation caused a notable reduction in the expression of Atp6v0d2 and DC-STAMP related to cell-cell fusion of osteoclasts. Especially, a decrease in bone resorption activity through suppression of actin ring formation by A2BAR stimulation was observed. Taken together, these results suggest that A2BAR stimulation inhibits the activation of ERK1/2, p38 and $NF-{\kappa}B$ by RANKL, which suppresses the induction of osteoclast marker genes, thus contributing to the decrease in osteoclast cell-cell fusion and bone resorption activity.

키워드

참고문헌

  1. Bowler, W.B., Buckley, K.A., Gartland, A., Hipskind, R.A., Bilbe, G., and Gallagher, J.A. (2001). Extracellular nucleotide signaling: a mechanism for integrating local and systemic responses in the activation of bone remodeling. Bone 28, 507-512. https://doi.org/10.1016/S8756-3282(01)00430-6
  2. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  3. Burgess, T.L., Qian, Y., Kaufman, S., Ring, B.D., Van, G., Capparelli, C., Kelley, M., Hsu, H., Boyle, W.J., Dunstan, C.R., et al. (1999). The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527-538. https://doi.org/10.1083/jcb.145.3.527
  4. Carroll, S.H., Wigner, N.A., Kulkarni, N., Johnston-Cox, H., Gerstenfeld, L.C., and Ravid, K. (2012). A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J. Biol. Chem. 287, 15718-15727. https://doi.org/10.1074/jbc.M112.344994
  5. Chen, J.F., Eltzschig, H.K., and Fredholm, B.B. (2013). Adenosine receptors as drug targets--what are the challenges? Nat. Rev. Drug Discov. 12, 265-286. https://doi.org/10.1038/nrd3955
  6. Choi, J., Choi, S.Y., Lee, S.Y., Lee, J.Y., Kim, H.S., Lee, S.Y., and Lee, N.K. (2013). Caffeine enhances osteoclast differentiation and maturation through p38 MAP kinase/Mitf and DC-STAMP/CtsK and TRAP pathway. Cell. Signal. l25, 1222-1227.
  7. Corciulo, C., Wilder, T., and Cronstein, B.N. (2016). Adenosine A2B receptors play an important role in bone homeostasis. Purinergic Signal. 12, 537-547. https://doi.org/10.1007/s11302-016-9519-2
  8. Evans, B.A., Elford, C., Pexa, A., Francis, K., Hughes, A.C., Deussen, A., and Ham, J. (2006). Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J. Bone Miner. Res. 21, 228-236.
  9. Fredholm, B.B., AP, I.J., Jacobson, K.A., Klotz, K.N., and Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527- 552.
  10. Ham, J., and Evans, B.A. (2012). An emerging role for adenosine and its receptors in bone homeostasis. Front. Endocrinol. 3, 113.
  11. He, W., Mazumder, A., Wilder, T., and Cronstein, B.N. (2013a). Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J. 27, 3446-3454. https://doi.org/10.1096/fj.13-231233
  12. He, W., Wilder, T., and Cronstein, B.N. (2013b). Rolofylline, an adenosine A1 receptor antagonist, inhibits osteoclast differentiation as an inverse agonist. Br. J. Pharmacol. 170, 1167-1176. https://doi.org/10.1111/bph.12342
  13. Huh, J.E., Shin, J.H., Jang, E.S., Park, S.J., Park, D.R., Ko, R., Seo, D.H., Kim, H.S., Lee, S.H., Choi, Y., et al. (2016). Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1beta axis in mice. Sci. Rep. 6, 22511. https://doi.org/10.1038/srep22511
  14. Jang, H.D., Shin, J.H., Park, D.R., Hong, J.H., Yoon, K., Ko, R., Ko, C.Y., Kim, H.S., Jeong, D., Kim, N., et al. (2011). Inactivation of glycogen synthase kinase-3beta is required for osteoclast differentiation. J. Biol. Chem. 286, 39043-39050. https://doi.org/10.1074/jbc.M111.256768
  15. Kara, F.M., Chitu, V., Sloane, J., Axelrod, M., Fredholm, B.B., Stanley, E.R., and Cronstein, B.N. (2010a). Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J. 24, 2325-2333. https://doi.org/10.1096/fj.09-147447
  16. Kara, F.M., Doty, S.B., Boskey, A., Goldring, S., Zaidi, M., Fredholm, B.B., and Cronstein, B.N. (2010b). Adenosine A(1) receptors regulate bone resorption in mice: adenosine A(1) receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A(1) receptor-knockout mice. Arthritis Rheum. 62, 534-541. https://doi.org/10.1002/art.27219
  17. Ko, R., Park, J.H., Ha, H., Choi, Y., and Lee, S.Y. (2015). Glycogen synthase kinase 3beta ubiquitination by TRAF6 regulates TLR3- mediated pro-inflammatory cytokine production. Nat. Commun. 6, 6765. https://doi.org/10.1038/ncomms7765
  18. Lee, N.K., Choi, H.K., Kim, D.K., and Lee, S.Y. (2006). Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced NF-${\kappa}B$ activation. Mol. Cell Biochem. 281, 55-61. https://doi.org/10.1007/s11010-006-0333-y
  19. Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., et al. (2006). v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409. https://doi.org/10.1038/nm1514
  20. Mediero, A., and Cronstein, B.N. (2013). Adenosine and bone metabolism. Trends Endocrinol. Metab. 24, 290-300. https://doi.org/10.1016/j.tem.2013.02.001
  21. Miyamoto, T. (2011). Regulators of osteoclast differentiation and cell-cell fusion. Keio J. Med. 60, 101-105. https://doi.org/10.2302/kjm.60.101
  22. Orriss, I.R., Burnstock, G., and Arnett, T.R. (2010). Purinergic signalling and bone remodelling. Curr. Opin. Pharmacol. 10, 322- 330. https://doi.org/10.1016/j.coph.2010.01.003
  23. Roberts, H.C., Knott, L., Avery, N.C., Cox, T.M., Evans, M.J., and Hayman, A.R. (2007). Altered collagen in tartrate-resistant acid phosphatase (TRAP)-deficient mice: a role for TRAP in bone collagen metabolism. Calcif. Tissue. Int. 80,400-410. https://doi.org/10.1007/s00223-007-9032-2
  24. Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997). Role of 1 alpha,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223-235.
  25. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T. and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357. https://doi.org/10.1210/edrv.20.3.0367
  26. Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304. https://doi.org/10.1038/nri2062
  27. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  28. Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  29. Teitelbaum, S.L. and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649. https://doi.org/10.1038/nrg1122
  30. Trincavelli, M.L., Daniele, S., Giacomelli, C., Taliani, S., Da Settimo, F., Cosimelli, B., Greco, G., Novellino, E. and Martini, C. (2014). Osteoblast differentiation and survival: A role for A2B adenosine receptor allosteric modulators. BBA-Mol. Cell Res. 1843, 2957-2966.
  31. Vaananen, H.K., Zhao, H., Mulari, M. and Halleen, J.M. (2000). The cell biology of osteoclast function. J. Cell Sci. 113 ( Pt 3), 377-381.
  32. Wilson, S.R., Peters, C., Saftig, P. and Bromme, D. (2009). Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. J. Biol. Chem. 284, 2584-2592. https://doi.org/10.1074/jbc.M805280200
  33. Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., et al. (2005). DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345-351. https://doi.org/10.1084/jem.20050645
  34. Yang, J.N., Bjorklund, O., Lindstrom-Tornqvist, K., Lindgren, E., Eriksson, T.M., Kahlstrom, J., Chen, J.F., Schwarzschild, M.A., Tobler, I. and Fredholm, B.B. (2009). Mice heterozygous for both A1 and A(2A) adenosine receptor genes show similarities to mice given longterm caffeine. J. Appl. Physiol. (1985) 106, 631-639.

피인용 문헌

  1. Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103004
  2. Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells vol.19, pp.11, 2017, https://doi.org/10.3390/ijms19113601
  3. The Adenosine A2B Receptor Drives Osteoclast-Mediated Bone Resorption in Hypoxic Microenvironments vol.8, pp.6, 2019, https://doi.org/10.3390/cells8060624
  4. Tatarinan T, an α‐asarone‐derived lignin, attenuates osteoclastogenesis induced by RANKL via the inhibition of NFATc1/c‐Fos expression vol.43, pp.12, 2019, https://doi.org/10.1002/cbin.11197
  5. Inhibition of MEK/ERK upregulates GSH production and increases RANKL-induced osteoclast differentiation in RAW 264.7 cells vol.54, pp.11, 2017, https://doi.org/10.1080/10715762.2020.1742896