참고문헌
- Bowler, W.B., Buckley, K.A., Gartland, A., Hipskind, R.A., Bilbe, G., and Gallagher, J.A. (2001). Extracellular nucleotide signaling: a mechanism for integrating local and systemic responses in the activation of bone remodeling. Bone 28, 507-512. https://doi.org/10.1016/S8756-3282(01)00430-6
- Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
- Burgess, T.L., Qian, Y., Kaufman, S., Ring, B.D., Van, G., Capparelli, C., Kelley, M., Hsu, H., Boyle, W.J., Dunstan, C.R., et al. (1999). The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527-538. https://doi.org/10.1083/jcb.145.3.527
- Carroll, S.H., Wigner, N.A., Kulkarni, N., Johnston-Cox, H., Gerstenfeld, L.C., and Ravid, K. (2012). A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J. Biol. Chem. 287, 15718-15727. https://doi.org/10.1074/jbc.M112.344994
- Chen, J.F., Eltzschig, H.K., and Fredholm, B.B. (2013). Adenosine receptors as drug targets--what are the challenges? Nat. Rev. Drug Discov. 12, 265-286. https://doi.org/10.1038/nrd3955
- Choi, J., Choi, S.Y., Lee, S.Y., Lee, J.Y., Kim, H.S., Lee, S.Y., and Lee, N.K. (2013). Caffeine enhances osteoclast differentiation and maturation through p38 MAP kinase/Mitf and DC-STAMP/CtsK and TRAP pathway. Cell. Signal. l25, 1222-1227.
- Corciulo, C., Wilder, T., and Cronstein, B.N. (2016). Adenosine A2B receptors play an important role in bone homeostasis. Purinergic Signal. 12, 537-547. https://doi.org/10.1007/s11302-016-9519-2
- Evans, B.A., Elford, C., Pexa, A., Francis, K., Hughes, A.C., Deussen, A., and Ham, J. (2006). Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J. Bone Miner. Res. 21, 228-236.
- Fredholm, B.B., AP, I.J., Jacobson, K.A., Klotz, K.N., and Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527- 552.
- Ham, J., and Evans, B.A. (2012). An emerging role for adenosine and its receptors in bone homeostasis. Front. Endocrinol. 3, 113.
- He, W., Mazumder, A., Wilder, T., and Cronstein, B.N. (2013a). Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J. 27, 3446-3454. https://doi.org/10.1096/fj.13-231233
- He, W., Wilder, T., and Cronstein, B.N. (2013b). Rolofylline, an adenosine A1 receptor antagonist, inhibits osteoclast differentiation as an inverse agonist. Br. J. Pharmacol. 170, 1167-1176. https://doi.org/10.1111/bph.12342
- Huh, J.E., Shin, J.H., Jang, E.S., Park, S.J., Park, D.R., Ko, R., Seo, D.H., Kim, H.S., Lee, S.H., Choi, Y., et al. (2016). Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1beta axis in mice. Sci. Rep. 6, 22511. https://doi.org/10.1038/srep22511
- Jang, H.D., Shin, J.H., Park, D.R., Hong, J.H., Yoon, K., Ko, R., Ko, C.Y., Kim, H.S., Jeong, D., Kim, N., et al. (2011). Inactivation of glycogen synthase kinase-3beta is required for osteoclast differentiation. J. Biol. Chem. 286, 39043-39050. https://doi.org/10.1074/jbc.M111.256768
- Kara, F.M., Chitu, V., Sloane, J., Axelrod, M., Fredholm, B.B., Stanley, E.R., and Cronstein, B.N. (2010a). Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J. 24, 2325-2333. https://doi.org/10.1096/fj.09-147447
- Kara, F.M., Doty, S.B., Boskey, A., Goldring, S., Zaidi, M., Fredholm, B.B., and Cronstein, B.N. (2010b). Adenosine A(1) receptors regulate bone resorption in mice: adenosine A(1) receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A(1) receptor-knockout mice. Arthritis Rheum. 62, 534-541. https://doi.org/10.1002/art.27219
- Ko, R., Park, J.H., Ha, H., Choi, Y., and Lee, S.Y. (2015). Glycogen synthase kinase 3beta ubiquitination by TRAF6 regulates TLR3- mediated pro-inflammatory cytokine production. Nat. Commun. 6, 6765. https://doi.org/10.1038/ncomms7765
-
Lee, N.K., Choi, H.K., Kim, D.K., and Lee, S.Y. (2006). Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced NF-
${\kappa}B$ activation. Mol. Cell Biochem. 281, 55-61. https://doi.org/10.1007/s11010-006-0333-y - Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., et al. (2006). v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409. https://doi.org/10.1038/nm1514
- Mediero, A., and Cronstein, B.N. (2013). Adenosine and bone metabolism. Trends Endocrinol. Metab. 24, 290-300. https://doi.org/10.1016/j.tem.2013.02.001
- Miyamoto, T. (2011). Regulators of osteoclast differentiation and cell-cell fusion. Keio J. Med. 60, 101-105. https://doi.org/10.2302/kjm.60.101
- Orriss, I.R., Burnstock, G., and Arnett, T.R. (2010). Purinergic signalling and bone remodelling. Curr. Opin. Pharmacol. 10, 322- 330. https://doi.org/10.1016/j.coph.2010.01.003
- Roberts, H.C., Knott, L., Avery, N.C., Cox, T.M., Evans, M.J., and Hayman, A.R. (2007). Altered collagen in tartrate-resistant acid phosphatase (TRAP)-deficient mice: a role for TRAP in bone collagen metabolism. Calcif. Tissue. Int. 80,400-410. https://doi.org/10.1007/s00223-007-9032-2
- Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997). Role of 1 alpha,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223-235.
- Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T. and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357. https://doi.org/10.1210/edrv.20.3.0367
- Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304. https://doi.org/10.1038/nri2062
- Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
- Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
- Teitelbaum, S.L. and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649. https://doi.org/10.1038/nrg1122
- Trincavelli, M.L., Daniele, S., Giacomelli, C., Taliani, S., Da Settimo, F., Cosimelli, B., Greco, G., Novellino, E. and Martini, C. (2014). Osteoblast differentiation and survival: A role for A2B adenosine receptor allosteric modulators. BBA-Mol. Cell Res. 1843, 2957-2966.
- Vaananen, H.K., Zhao, H., Mulari, M. and Halleen, J.M. (2000). The cell biology of osteoclast function. J. Cell Sci. 113 ( Pt 3), 377-381.
- Wilson, S.R., Peters, C., Saftig, P. and Bromme, D. (2009). Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. J. Biol. Chem. 284, 2584-2592. https://doi.org/10.1074/jbc.M805280200
- Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., et al. (2005). DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345-351. https://doi.org/10.1084/jem.20050645
- Yang, J.N., Bjorklund, O., Lindstrom-Tornqvist, K., Lindgren, E., Eriksson, T.M., Kahlstrom, J., Chen, J.F., Schwarzschild, M.A., Tobler, I. and Fredholm, B.B. (2009). Mice heterozygous for both A1 and A(2A) adenosine receptor genes show similarities to mice given longterm caffeine. J. Appl. Physiol. (1985) 106, 631-639.
피인용 문헌
- Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103004
- Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells vol.19, pp.11, 2017, https://doi.org/10.3390/ijms19113601
- The Adenosine A2B Receptor Drives Osteoclast-Mediated Bone Resorption in Hypoxic Microenvironments vol.8, pp.6, 2019, https://doi.org/10.3390/cells8060624
- Tatarinan T, an α‐asarone‐derived lignin, attenuates osteoclastogenesis induced by RANKL via the inhibition of NFATc1/c‐Fos expression vol.43, pp.12, 2019, https://doi.org/10.1002/cbin.11197
- Inhibition of MEK/ERK upregulates GSH production and increases RANKL-induced osteoclast differentiation in RAW 264.7 cells vol.54, pp.11, 2017, https://doi.org/10.1080/10715762.2020.1742896