DOI QR코드

DOI QR Code

A Study of Measuring Traffic Congestion for Urban Network using Average Link Travel Time based on DTG Big Data

DTG 빅데이터 기반의 링크 평균통행시간을 이용한 도심네트워크 혼잡분석 방안 연구

  • 한여희 (서울시립대학교 교통공학과) ;
  • 김영찬 (서울시립대학교 교통공학과)
  • Received : 2017.05.29
  • Accepted : 2017.08.28
  • Published : 2017.10.31

Abstract

Together with the Big Data of the 4th Industrial Revolution, the traffic information system has been changed to an section detection system by the point detection system. With DTG(Digital Tachograph) data based on Global Navigation Satellite System, the properties of raw data and data according to processing step were examined. We identified the vehicle trajectory, the link travel time of individual vehicle, and the link average travel time which are generated according to the processing step. In this paper, we proposed a application method for traffic management as characteristics of processing data. We selected the historical data considering the data management status of the center and the availability at the present time. We proposed a method to generate the Travel Time Index with historical link average travel time which can be collected all the time with wide range. We propose a method to monitor the traffic congestion using the Travel Time Index, and analyze the case of intersections when the traffic operation method changed. At the same time, the current situation which makes it difficult to fully utilize DTG data are suggested as limitations.

4차 산업혁명의 빅데이터 시대와 더불어 교통정보 수집원도 기존 지점검지 체계에서 구간검지체계로 바뀌었다. 위성측위시스템 기반의 DTG(Digital Tachograph) 자료를 대상으로, 원시자료와 가공단계에 따른 자료의 속성을 고찰하였다. 가공단계에 따라 생성되는 개별차량의 주행궤적, 개별차량의 링크통행시간, 링크 평균통행시간 정보의 특성을 분석하였다. 가공자료의 특징에 따라 교통관리분야에서 활용할 수 있는 방안을 고찰하고, 센터의 자료 관리현황과 현 시점에서 활용 가능한 이력자료를 선정하였다. 광범위성을 가지고 상시 수집 가능한 링크 평균통행시간의 이력자료를 이용하여 통행시간지표를 생성하는 방법을 제시하였다. 통행시간지표를 이용하여 도심 네트워크의 혼잡을 모니터링하는 방법에 대해 고찰하고, 단독 교차로의 운영 방법이 바뀔 경우 이에 대한 사전 사후 분석을 사례로 분석하였다. 동시에 DTG 자료의 온전한 활용이 어려운 현재의 상황을 한계점으로 제시하였다.

Keywords

References

  1. Andrew J. M. and Wenjing P. (2011), Applying Emerging Private-Sector Probe-Based Speed Data in the National Capital Region's Planning Processes, TRR, No. 2243, p.19.
  2. Chungwon L. (2003), "Mobility Index for Macroscopic Urban Transportation Network Analysis," Journal of the Korean Society of Civil Engineers, D 23 (6D), p.795.
  3. City of Toronto (2015), Congestion Management -PLAN 2016-2020-, p.19.
  4. City of Toronto, http://www1.toronto.ca, 2017.05.24.
  5. INRIX (2010), INRIX National Traffic Scorecard -2010 Annual Report-, pp.3-14, pp.42-44.
  6. INRIX (2015), Traffic Scorecard 2015, pp.9-16.
  7. Kansas City Scout (2011), Congestion Index Report, p.4.
  8. Kentucky Transportation Center (2015), Analysis of Historical Travel Time Data, pp.10-32.
  9. Maricopa Association of Governments (2008), Performance Measurement Framework and Congestion Management Update -Review of Best Practices-, p.39, p.2.
  10. McMaster Institute for Transport and Logistics (2015), City of Toronto -Major Arterials-, pp.1-75.
  11. Ministry of Land, Transport and Maritime Affairs (2013), Korean Highway Capacity Manual, pp.210-325, 524-554.
  12. Seoul Development Institute (2003), Network Mobility Evauation Index Development -Centered on Seoul Metropolitan CBD Transportation Network Restrucuring-, pp.59-62, pp.97-101.
  13. Seoul Metropolitan Government (2016), Seoul Travel Speed Report in 2015, pp.674-682.
  14. Texas A&M Tranportation Institute and INRIX (2015), 2015 Urban Mobility Scorecard, Appendix A, pp.7-19.
  15. Texas A&M Tranportation Institute and INRIX (2015), 2015 Urban Mobility Scorecard, pp.1-2, p.14.
  16. Texas Transportation Institute (2003), Selecting Travel Reliability Measures, p.32.
  17. Texas Transportation Institute (2010), Investigating the Effect of Freeway Congestion Thresholds on Decision-Making Inputs, pp.18-87.
  18. TomTom, https://www.tomtom.com/en_gb/trafficindex/, 2017.01.13.
  19. TRB (2013), Analytical Procedures for Determining the Impacts of Reliability Mitigation Strategies, pp.42-61.

Cited by

  1. Spatiotemporal Congestion Recognition Index to Evaluate Performance under Oversaturated Conditions vol.23, pp.8, 2017, https://doi.org/10.1007/s12205-019-2232-2
  2. 동적·정적 자료 기반 도로위험도 산정 알고리즘 개발 vol.19, pp.4, 2020, https://doi.org/10.12815/kits.2020.19.4.55
  3. Map Matching Algorithm for Real-Time Data Processing of Non-route GPS Data in Seoul vol.25, pp.9, 2017, https://doi.org/10.1007/s12205-021-1750-x