DOI QR코드

DOI QR Code

실내 멀티홉 VLC환경에서 디밍을 적용한 파워 성능 비교

Power Performance Comparison using Dimming in the Indoor Multi-hop VLC Environment

  • 김주석 (한국전자통신연구원 사업화부문) ;
  • 이민정 ((주)에버정보기술) ;
  • 김경석 (충북대학교 전파통신공학과)
  • 투고 : 2017.09.20
  • 심사 : 2017.10.13
  • 발행 : 2017.10.31

초록

본 논문에서는 멀티 홉 VLC 환경에서 디밍 제어를 이용한 각 변조 방식의 전력 성능을 분석 하였다. 성능을 분석하기 위해서 VLC기반 실내 멀티 홉 시스템을 구성하였으며, OPPM과 VPPM의 두 가지 변조 방식 기법을 적용하였다. 시뮬레이션은 송신 전력과 수신 전력을 고려하여 각 변조기법의 dimming 제어 및 홉 수에 따라서 수행하였다. 그 결과, 변조에 따른 송신 전력 및 수신 전력에서, dimming이 증가함에 따라, OPPM은 VPPM보다 적은 전력 성능을 갖으며, 수신 전력 대 홉 수 및 dimming이 50 % 일 때, 홉 수가 증가하고 거리가 길수록 VPPM 및 OPPM의 수신 전력은 급속히 감소하는 것으로 나타났다.

Visible light communication (VLC) offers communication function in addition to illumination. Because the signal communication capacity per cable is 1,000 times compared to the power line communication (PLC), optical fiber is being advertised as the basis of the information and communication. Also dimming control of LED is an important component needed to provide energy savings and quality of life. This study configured multi-hop VLC system model in a building using optical fiber and analyzed the power performance of two of modulations using dimming techniques. The transmission power and received power were used to compare the power performance in multi-hop VLC environments.

키워드

참고문헌

  1. M. Kavehrad, "Sustainable energy-efficient wireless applications using light," IEEE Commun. Mag., vol. 48, no. 12, pp. 66-73, Dec. 2010. DOI: https://doi.org/10.1109/mcom.2010.5673074
  2. B.G. Choi, M.J. Lee and K.S. Kim, "Performance Analysis of the VLC System applying SR-ARQ," The journal of the Institute of Internet Broadcasting and Communication, vol. 15, no. 4, pp. 127-134, Aug. 2015. DOI: https://doi.org/10.7236/jiibc.2015.15.4.127
  3. A. Jovicic, J. Li, et al., "Visible Light Communication: Opportunities, Challenges and the Path to Market," IEEE Commun. Magazine, vol. 51, no 12, pp. 26-32, Dec. 2013. DOI: https://doi.org/10.1109/mcom.2013.6685754
  4. M.J. Lee, B.J. Lee, S.L. Ju, Y.W. Kim and K.S. Kim, "Performance Comparison of Modulation Schemes according to the Dimming Control in MIMO-VLC System." The journal of the Institute of Internet Broadcasting and Communication, vol. 14, no. 4, pp. 63-69, Aug. 2014. DOI: https://doi.org/10.7236/jiibc.2014.14.4.63
  5. D. Tsonev et al., "A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride ${\mu}LED$," IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637-640, Apr. 1, 2014. DOI: https://doi.org/10.1109/lpt.2013.2297621
  6. Y. Wang et al., "875-Mb/s asynchronous bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system," in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng., Mar. 2013, pp. 1-3, paper. OTh1G.3. DOI: https://doi.org/10.1364/ofc.2013.oth1g.3
  7. H. Elgala, R. Mesleh, and H. Haas, "Indoor optical wireless communication: potential and state-of-the-art," Communications Magazine, IEEE, vol. 49, no. 9, pp. 56-62, 2011. DOI: https://doi.org/10.1109/mcom.2011.6011734
  8. S. Rajagopal, R. Roberts, and S.-K. Lim, "IEEE 802.15.7 visible light communication: modulation schemes and Dimming support," Communications Magazine, IEEE, vol. 50, no. 3, pp. 72-82, March 2012. DOI: https://doi.org/10.1109/mcom.2012.6163585
  9. T. Komine and M. Nakagawa, "Integrated system of white LED visiblelight communication and power-line communication," IEEE Trans. Consum. Electron., vol. 49, no. 1, pp. 71-79, Feb. 2003. DOI: https://doi.org/10.1109/pimrc.2002.1045482
  10. Y Wang, N Chi, Y Wang, L Tao, and J Shi, "Network Architecture of a High-Speed Visible Light Communication Local Area Network," IEEE Photonics Tech. Letters, VOL. 27, NO. 2, JANUARY 15, 2015. DOI: https://doi.org/10.1109/lpt.2014.2364955
  11. K. Lee and H. Park, "Modulations for Visible Light Communications with Dimming Control," IEEE Photonics Tech. Letters, vol.23, no. 16, Aug. 2011. DOI: https://doi.org/10.1109/lpt.2011.2157676
  12. H. Park and J. R. Barry, "Modulation analysis for wireless infrared communications", in Proc. 1995 IEEE Int. Conf. Commun., vol. 2, pp.1182-1186. DOI: https://doi.org/10.1109/icc.1995.524287
  13. A. B. Siddique and M. Tahir, "Joint brightness control and data transmission for visible light communication systems based on white LEDs," in Proc. 8th Annu. IEEE Consum. Commun. Netw. Conf. Smart Spaces Pers. Area Netw., Jan. 2011, pp. 1026-1030. DOI: https://doi.org/10.1109/ccnc.2011.5766321
  14. 802.15.7 PHY and MAC Standard for Short Range Wireless Optical Communication Using Visible Light, IEEE Std., 2010. DOI: https://doi.org/10.1109/ieeestd.2011.6016195
  15. T. Ohtsuki, I. Sasase, and S. Mori, "Lower bounds on capacity and cutoff rate of differential overlapping pulse position modulation in optical direct-detection channel," IEICE Trans. Comm., vol. E77-B, pp. 1230-1237, Oct. 1994. DOI: https://doi.org/10.1109/icc.1994.368797
  16. J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE, vol. 85, no. 2, pp. 265-298, Feb. 1997. DOI: https://doi.org/10.1007/978-1-4615-2700-8
  17. V. Jungnickel, V. Pohl, S. Noenning, and C. von Helmolt, "A physical model for the wireless infrared communication channel," IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 631-640, 2002. DOI: https://doi.org/10.1109/49.995522
  18. J.B.Carruthers and J.M.Kahn, "Modeling of Nondirected Wireless Infrared Channels," IEEE Trans. Commun, vol. 45, no.10, pp.1260-1268, 1997. DOI: https://doi.org/10.1109/icc.1996.541403
  19. R. Roka and F. Certik, "Modeling of environmental influences at the signal transmission in the optical transmission medium," International Journal of Electrical Communication Networks and Information Security, vol. 4, no. 3, pp. 144-162, 2012.
  20. Binh, L.N., Optical Fiber Communications Systems, CRC Press, ISBN 978-1-4398-0620-3, Boca Raton, United States of America, 2010. DOI: https://doi.org/10.1109/ofc.2003.315883
  21. J. R. F. da Rocha and J. J. O'Reilly, "Linear direct-detection fiber-optic receiver optimization in the presence of intersymbol interference," IEEE Trans. Commun., vol. COM-34, no. 4, pp. 365-374, April 1986. DOI: https://doi.org/10.1109/tcom.1986.1096543
  22. J. E. Mazo and J. Salz, "On optical data communication via direct detection of light pulses," Bell Sys. Tech. Journal, vol. 55, pp. 347-369, March 1976. DOI: https://doi.org/10.1002/j.1538-7305.1976.tb03320.x
  23. T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron., vol. 50, pp. 100-107, 2004. DOI: https://doi.org/10.1109/tce.2004.1277847
  24. J. Grubor, S. Randel, K. D. Langer, and J. W. Waleski, "Broadband information broadcasting using LED-based interior lighting," J. Lightw. Technol., vol. 26, pp. 3883-3892, 2008. DOI: https://doi.org/10.1109/jlt.2008.928525
  25. Z. Huang and Y. Ji, "Efficient user access and lamp selection in LED based visible light communication network," Chin. Opt. Lett., vol. 10, no. 5, pp. 6021-6025, 2012. DOI: https://doi.org/10.3788/col201210.050602